Distributed Consensus Algorithm for Decision-Making in Multi-agent
Multi-armed Bandit
- URL: http://arxiv.org/abs/2306.05998v1
- Date: Fri, 9 Jun 2023 16:10:26 GMT
- Title: Distributed Consensus Algorithm for Decision-Making in Multi-agent
Multi-armed Bandit
- Authors: Xiaotong Cheng, Setareh Maghsudi
- Abstract summary: We study a structured multi-agent multi-armed bandit (MAMAB) problem in a dynamic environment.
A graph reflects the information-sharing structure among agents, and the arms' reward distributions are piecewise-stationary with several unknown change points.
The goal is to develop a decision-making policy for the agents that minimizes the regret, which is the expected total loss of not playing the optimal arm at each time step.
- Score: 7.708904950194129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a structured multi-agent multi-armed bandit (MAMAB) problem in a
dynamic environment. A graph reflects the information-sharing structure among
agents, and the arms' reward distributions are piecewise-stationary with
several unknown change points. The agents face the identical
piecewise-stationary MAB problem. The goal is to develop a decision-making
policy for the agents that minimizes the regret, which is the expected total
loss of not playing the optimal arm at each time step. Our proposed solution,
Restarted Bayesian Online Change Point Detection in Cooperative Upper
Confidence Bound Algorithm (RBO-Coop-UCB), involves an efficient multi-agent
UCB algorithm as its core enhanced with a Bayesian change point detector. We
also develop a simple restart decision cooperation that improves
decision-making. Theoretically, we establish that the expected group regret of
RBO-Coop-UCB is upper bounded by $\mathcal{O}(KNM\log T + K\sqrt{MT\log T})$,
where K is the number of agents, M is the number of arms, and T is the number
of time steps. Numerical experiments on synthetic and real-world datasets
demonstrate that our proposed method outperforms the state-of-the-art
algorithms.
Related papers
- Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
We present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
In particular, we present sred, a truly adaptive algorithm that can reject arms in it any round based on the observed empirical gaps between the rewards of various arms.
arXiv Detail & Related papers (2023-12-19T13:17:43Z) - Decentralised Q-Learning for Multi-Agent Markov Decision Processes with
a Satisfiability Criterion [0.0]
We propose a reinforcement learning algorithm to solve a multi-agent Markov decision process (MMDP)
The goal is to lower the time average cost of each agent to below a pre-specified agent-specific bound.
arXiv Detail & Related papers (2023-11-21T13:56:44Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - On the Complexity of Multi-Agent Decision Making: From Learning in Games
to Partial Monitoring [105.13668993076801]
A central problem in the theory of multi-agent reinforcement learning (MARL) is to understand what structural conditions and algorithmic principles lead to sample-efficient learning guarantees.
We study this question in a general framework for interactive decision making with multiple agents.
We show that characterizing the statistical complexity for multi-agent decision making is equivalent to characterizing the statistical complexity of single-agent decision making.
arXiv Detail & Related papers (2023-05-01T06:46:22Z) - Factorization of Multi-Agent Sampling-Based Motion Planning [72.42734061131569]
Modern robotics often involves multiple embodied agents operating within a shared environment.
Standard sampling-based algorithms can be used to search for solutions in the robots' joint space.
We integrate the concept of factorization into sampling-based algorithms, which requires only minimal modifications to existing methods.
We present a general implementation of a factorized SBA, derive an analytical gain in terms of sample complexity for PRM*, and showcase empirical results for RRG.
arXiv Detail & Related papers (2023-04-01T15:50:18Z) - A Reduction-based Framework for Sequential Decision Making with Delayed
Feedback [53.79893086002961]
We study delayed feedback in general multi-agent sequential decision making.
We propose a novel reduction-based framework, which turns any multi-batched algorithm for sequential decision making with instantaneous feedback into a sample-efficient algorithm.
arXiv Detail & Related papers (2023-02-03T01:16:09Z) - Optimal Clustering with Bandit Feedback [57.672609011609886]
This paper considers the problem of online clustering with bandit feedback.
It includes a novel stopping rule for sequential testing that circumvents the need to solve any NP-hard weighted clustering problem as its subroutines.
We show through extensive simulations on synthetic and real-world datasets that BOC's performance matches the lower boundally, and significantly outperforms a non-adaptive baseline algorithm.
arXiv Detail & Related papers (2022-02-09T06:05:05Z) - Reinforcement Learning for Finite-Horizon Restless Multi-Armed
Multi-Action Bandits [8.136957953239254]
We study a finite-horizon restless multi-armed bandit problem with multiple actions dubbed R(MA)2B.
The state of each arm evolves according to a controlled Markov decision process (MDP), and the reward of pulling an arm depends on both the current state of the corresponding MDP and the action taken.
Since finding the optimal policy is typically intractable, we propose a computationally appealing index policy which we call Occupancy-Measured-Reward Index Policy.
arXiv Detail & Related papers (2021-09-20T21:40:12Z) - Bayesian Algorithms for Decentralized Stochastic Bandits [12.350564981588063]
We study a decentralized cooperative multi-agent multi-armed bandit problem with $K$ arms and $N$ agents connected over a network.
In our model, each arm's reward distribution is same for all agents, and rewards are drawn independently across agents and over time steps.
The goal is to minimize cumulative regret averaged over the entire network.
arXiv Detail & Related papers (2020-10-20T19:14:20Z) - Kernel Methods for Cooperative Multi-Agent Contextual Bandits [15.609414012418043]
Cooperative multi-agent decision making involves a group of agents cooperatively solving learning problems while communicating over a network with delays.
We consider the kernelised contextual bandit problem, where the reward obtained by an agent is an arbitrary linear function of the contexts' images in the related kernel reproducing Hilbert space (RKHS)
We propose textscCoop- KernelUCB, an algorithm that provides near-optimal bounds on the per-agent regret.
arXiv Detail & Related papers (2020-08-14T07:37:44Z) - Distributed Cooperative Decision Making in Multi-agent Multi-armed
Bandits [6.437761597996503]
We study a distributed decision-making problem in which multiple agents face the same bandit (MAB)
We design a dynamic, consensus-based, distributed estimation algorithm for cooperative estimation of mean rewards at each arm.
We show that both algorithms achieve group performance close to the performance of a central fusion center.
arXiv Detail & Related papers (2020-03-03T03:20:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.