SU(2)-Symmetric Spin-Boson Model: Quantum Criticality, Fixed-Point
Annihilation, and Duality
- URL: http://arxiv.org/abs/2203.02518v2
- Date: Tue, 2 May 2023 10:40:53 GMT
- Title: SU(2)-Symmetric Spin-Boson Model: Quantum Criticality, Fixed-Point
Annihilation, and Duality
- Authors: Manuel Weber, Matthias Vojta
- Abstract summary: We present high-accuracy quantum Monte Carlo results for the SU(2)-symmetric $S=1/2$ spin-boson (or Bose-Kondo) model.
Using a detailed scaling analysis, we provide direct numerical evidence for the collision and annihilation of two RG fixed points at $sast = 0.6540(2)$.
- Score: 0.582519087605215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The annihilation of two intermediate-coupling renormalization-group (RG)
fixed points is of interest in diverse fields from statistical mechanics to
high-energy physics, but has so far only been studied using perturbative
techniques. Here we present high-accuracy quantum Monte Carlo results for the
SU(2)-symmetric $S=1/2$ spin-boson (or Bose-Kondo) model. We study the model
with a power-law bath spectrum $\propto \omega^s$ where, in addition to a
critical phase predicted by perturbative RG, a stable strong-coupling phase is
present. Using a detailed scaling analysis, we provide direct numerical
evidence for the collision and annihilation of two RG fixed points at $s^\ast =
0.6540(2)$, causing the critical phase to disappear for $s<s^\ast$. In
particular, we uncover a surprising duality between the two fixed points,
corresponding to a reflection symmetry of the RG beta function, which we
utilize to make analytical predictions at strong coupling which are in
excellent agreement with numerics. Our work makes phenomena of fixed-point
annihilation accessible to large-scale simulations, and we comment on the
consequences for impurity moments in critical magnets.
Related papers
- KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Quantum Fluctuations Suppress the Critical Fields in BaCo$_2$(AsO$_4$)$_2$ [0.0]
BaCo$$(AsO$_4$)$$ recently emerged as a candidate host for bond-dependent (e.g. Kitaev) and third-neighbor ($J_3$) interactions.
We map out the intermediate and high-field phase diagram of BaCo$$(AsO$_4$)$ as a function of the out-of-plane magnetic field direction.
arXiv Detail & Related papers (2024-03-22T16:08:39Z) - Tunable quantum criticality and pseudocriticality across the fixed-point
annihilation in the anisotropic spin-boson model [0.26107298043931204]
We study the nontrivial renormalization-group scenario of fixed-point annihilation in spin-boson models.
We find a tunable transition between two localized phases that can be continuous or strongly first-order.
We also find scaling behavior at the symmetry-enhanced first-order transition, for which the inverse correlation-length exponent is given by the bath exponent.
arXiv Detail & Related papers (2024-03-04T19:00:07Z) - Ancilla quantum measurements on interacting chains: Sensitivity of entanglement dynamics to the type and concentration of detectors [46.76612530830571]
We consider a quantum many-body lattice system that is coupled to ancillary degrees of freedom (detectors'')
We explore the dynamics of density and of entanglement entropy in the chain, for various values of $rho_a$ and $M$.
arXiv Detail & Related papers (2023-11-21T21:41:11Z) - Quantum spin chains with bond dissipation [0.26107298043931204]
We study the effect of bond dissipation on the one-dimensional antiferromagnetic spin-$1/2$ Heisenberg model.
Our results suggest that the critical properties of the dissipative system are the same as for the spin-Peierls model.
arXiv Detail & Related papers (2023-10-17T18:46:27Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Scalable Spin Squeezing from Finite Temperature Easy-plane Magnetism [26.584014467399378]
We conjecture that any Hamiltonian exhibiting finite temperature, easy-plane ferromagnetism can be used to generate scalable spin squeezing.
Our results provide insights into the landscape of Hamiltonians that can be used to generate metrologically useful quantum states.
arXiv Detail & Related papers (2023-01-23T18:59:59Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z) - Resilience of the superradiant phase against $\mathbf {A^2}$ effects in
the quantum Rabi dimer [0.0]
We study the quantum criticality of a two-site model combining quantum Rabi models with hopping interaction.
We find that the model allows the appearance of a superradiant quantum phase transition (QPT) even in the presence of strong $mathbfA2$ terms.
Our work provides a way to the study of phase transitions in presence of the $mathbfA2$ terms and offers the prospect of investigating quantum-criticality physics and quantum devices in many-body systems.
arXiv Detail & Related papers (2020-03-03T04:14:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.