DDU-Nets: Distributed Dense Model for 3D MRI Brain Tumor Segmentation
- URL: http://arxiv.org/abs/2003.01337v1
- Date: Tue, 3 Mar 2020 05:08:34 GMT
- Title: DDU-Nets: Distributed Dense Model for 3D MRI Brain Tumor Segmentation
- Authors: Hanxiao Zhang, Jingxiong Li, Mali Shen, Yaqi Wang and Guang-Zhong Yang
- Abstract summary: Three patterns of distributed dense connections (DDCs) are proposed to enhance feature reuse and propagation of CNNs.
For better detecting and segmenting brain tumors from 3D MR images, CNN-based models embedded with DDCs (DDU-Nets) are trained efficiently from pixel to pixel.
The proposed method is evaluated on the BraTS 2019 dataset with results demonstrating the effectiveness of the DDU-Nets.
- Score: 27.547646527286886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmentation of brain tumors and their subregions remains a challenging task
due to their weak features and deformable shapes. In this paper, three patterns
(cross-skip, skip-1 and skip-2) of distributed dense connections (DDCs) are
proposed to enhance feature reuse and propagation of CNNs by constructing
tunnels between key layers of the network. For better detecting and segmenting
brain tumors from multi-modal 3D MR images, CNN-based models embedded with DDCs
(DDU-Nets) are trained efficiently from pixel to pixel with a limited number of
parameters. Postprocessing is then applied to refine the segmentation results
by reducing the false-positive samples. The proposed method is evaluated on the
BraTS 2019 dataset with results demonstrating the effectiveness of the DDU-Nets
while requiring less computational cost.
Related papers
- SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - Improved distinct bone segmentation in upper-body CT through
multi-resolution networks [0.39583175274885335]
In distinct bone segmentation from upper body CTs a large field of view and a computationally taxing 3D architecture are required.
This leads to low-resolution results lacking detail or localisation errors due to missing spatial context.
We propose end-to-end trainable segmentation networks that combine several 3D U-Nets working at different resolutions.
arXiv Detail & Related papers (2023-01-31T14:46:16Z) - Dual Multi-scale Mean Teacher Network for Semi-supervised Infection
Segmentation in Chest CT Volume for COVID-19 [76.51091445670596]
Automated detecting lung infections from computed tomography (CT) data plays an important role for combating COVID-19.
Most current COVID-19 infection segmentation methods mainly relied on 2D CT images, which lack 3D sequential constraint.
Existing 3D CT segmentation methods focus on single-scale representations, which do not achieve the multiple level receptive field sizes on 3D volume.
arXiv Detail & Related papers (2022-11-10T13:11:21Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation [13.158995287578316]
We propose a dynamic architecture network named Med-DANet to achieve effective accuracy and efficiency trade-off.
For each slice of the input 3D MRI volume, our proposed method learns a slice-specific decision by the Decision Network.
Our proposed method achieves comparable or better results than previous state-of-the-art methods for 3D MRI brain tumor segmentation.
arXiv Detail & Related papers (2022-06-14T03:25:58Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Semi-Supervised Hybrid Spine Network for Segmentation of Spine MR Images [14.190504802866288]
We propose a two-stage algorithm, named semi-supervised hybrid spine network (SSHSNet) to achieve simultaneous vertebral bodies (VBs) and intervertebral discs (IVDs) segmentation.
In the first stage, we constructed a 2D semi-supervised DeepLabv3+ by using cross pseudo supervision to obtain intra-slice features and coarse segmentation.
In the second stage, a 3D full-resolution patch-based DeepLabv3+ was built to extract inter-slice information.
Results show that the proposed method has great potential in dealing with the data imbalance problem
arXiv Detail & Related papers (2022-03-23T02:57:14Z) - Multi-Slice Dense-Sparse Learning for Efficient Liver and Tumor
Segmentation [4.150096314396549]
Deep convolutional neural network (DCNNs) has obtained tremendous success in 2D and 3D medical image segmentation.
We propose a novel dense-sparse training flow from a data perspective, in which, densely adjacent slices and sparsely adjacent slices are extracted as inputs for regularizing DCNNs.
We also design a 2.5D light-weight nnU-Net from a network perspective, in which, depthwise separable convolutions are adopted to improve the efficiency.
arXiv Detail & Related papers (2021-08-15T15:29:48Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Efficient embedding network for 3D brain tumor segmentation [0.33727511459109777]
In this paper, we investigate a way to transfer the performance of a two-dimensional classiffication network for the purpose of three-dimensional semantic segmentation of brain tumors.
As the input data is in 3D, the first layers of the encoder are devoted to the reduction of the third dimension in order to fit the input of the EfficientNet network.
Experimental results on validation and test data from the BraTS 2020 challenge demonstrate that the proposed method achieve promising performance.
arXiv Detail & Related papers (2020-11-22T16:17:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.