Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation
- URL: http://arxiv.org/abs/2206.06575v1
- Date: Tue, 14 Jun 2022 03:25:58 GMT
- Title: Med-DANet: Dynamic Architecture Network for Efficient Medical Volumetric
Segmentation
- Authors: Wenxuan Wang, Chen Chen, Jing Wang, Sen Zha, Yan Zhang, Jiangyun Li
- Abstract summary: We propose a dynamic architecture network named Med-DANet to achieve effective accuracy and efficiency trade-off.
For each slice of the input 3D MRI volume, our proposed method learns a slice-specific decision by the Decision Network.
Our proposed method achieves comparable or better results than previous state-of-the-art methods for 3D MRI brain tumor segmentation.
- Score: 13.158995287578316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For 3D medical image (e.g. CT and MRI) segmentation, the difficulty of
segmenting each slice in a clinical case varies greatly. Previous research on
volumetric medical image segmentation in a slice-by-slice manner conventionally
use the identical 2D deep neural network to segment all the slices of the same
case, ignoring the data heterogeneity among image slices. In this paper, we
focus on multi-modal 3D MRI brain tumor segmentation and propose a dynamic
architecture network named Med-DANet based on adaptive model selection to
achieve effective accuracy and efficiency trade-off. For each slice of the
input 3D MRI volume, our proposed method learns a slice-specific decision by
the Decision Network to dynamically select a suitable model from the predefined
Model Bank for the subsequent 2D segmentation task. Extensive experimental
results on both BraTS 2019 and 2020 datasets show that our proposed method
achieves comparable or better results than previous state-of-the-art methods
for 3D MRI brain tumor segmentation with much less model complexity. Compared
with the state-of-the-art 3D method TransBTS, the proposed framework improves
the model efficiency by up to 3.5x without sacrificing the accuracy. Our code
will be publicly available soon.
Related papers
- SDR-Former: A Siamese Dual-Resolution Transformer for Liver Lesion
Classification Using 3D Multi-Phase Imaging [59.78761085714715]
This study proposes a novel Siamese Dual-Resolution Transformer (SDR-Former) framework for liver lesion classification.
The proposed framework has been validated through comprehensive experiments on two clinical datasets.
To support the scientific community, we are releasing our extensive multi-phase MR dataset for liver lesion analysis to the public.
arXiv Detail & Related papers (2024-02-27T06:32:56Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Using U-Net Network for Efficient Brain Tumor Segmentation in MRI Images [4.3310896118860445]
This paper proposes a lightweight implementation of U-Net for brain tumor segmentation.
The proposed architecture does not need large amount of data to train the proposed lightweight U-Net.
The lightweight U-Net shows very promising results on BITE dataset and it achieves a mean intersection-over-union (IoU) of 89%.
arXiv Detail & Related papers (2022-11-03T15:19:58Z) - CORPS: Cost-free Rigorous Pseudo-labeling based on Similarity-ranking
for Brain MRI Segmentation [3.1657395760137406]
We propose a semi-supervised segmentation framework built upon a novel atlas-based pseudo-labeling method and a 3D deep convolutional neural network (DCNN) for 3D brain MRI segmentation.
The experimental results demonstrate the superiority of the proposed framework over the baseline method both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-05-19T14:42:49Z) - DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI
Segmentation [0.0]
We propose a novel Dimension Fusion Edge-guided network (DFENet) that can meet both of these requirements by fusing the features of 2D and 3D CNNs.
The proposed model is robust, accurate, superior to the existing methods, and can be relied upon for biomedical applications.
arXiv Detail & Related papers (2021-05-17T15:43:59Z) - Medical Transformer: Universal Brain Encoder for 3D MRI Analysis [1.6287500717172143]
Existing 3D-based methods have transferred the pre-trained models to downstream tasks.
They demand a massive amount of parameters to train the model for 3D medical imaging.
We propose a novel transfer learning framework, called Medical Transformer, that effectively models 3D volumetric images in the form of a sequence of 2D image slices.
arXiv Detail & Related papers (2021-04-28T08:34:21Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z) - DDU-Nets: Distributed Dense Model for 3D MRI Brain Tumor Segmentation [27.547646527286886]
Three patterns of distributed dense connections (DDCs) are proposed to enhance feature reuse and propagation of CNNs.
For better detecting and segmenting brain tumors from 3D MR images, CNN-based models embedded with DDCs (DDU-Nets) are trained efficiently from pixel to pixel.
The proposed method is evaluated on the BraTS 2019 dataset with results demonstrating the effectiveness of the DDU-Nets.
arXiv Detail & Related papers (2020-03-03T05:08:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.