論文の概要: Fully Convolutional Networks for Automatically Generating Image Masks to
Train Mask R-CNN
- arxiv url: http://arxiv.org/abs/2003.01383v2
- Date: Thu, 20 May 2021 06:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 22:17:33.536321
- Title: Fully Convolutional Networks for Automatically Generating Image Masks to
Train Mask R-CNN
- Title(参考訳): マスクR-CNN学習用画像マスクの自動生成のための完全畳み込みネットワーク
- Authors: Hao Wu, Jan Paul Siebert and Xiangrong Xu
- Abstract要約: Mask R-CNN法は、これまでオブジェクト検出の最良の結果を達成するが、トレーニングのためにMaskを入手するには非常に時間がかかり、手間がかかる。
本稿では,最新のMask R-CNN深層学習のための画像マスク自動生成手法を提案する。
提案手法は,Mask R-CNNを訓練するために自動的に画像マスクを得ることができ,セグメント化における平均精度(mAP)の90%以上の精度で非常に高い分類精度を得ることができる。
- 参考スコア(独自算出の注目度): 4.901462756978097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel automatically generating image masks method for
the state-of-the-art Mask R-CNN deep learning method. The Mask R-CNN method
achieves the best results in object detection until now, however, it is very
time-consuming and laborious to get the object Masks for training, the proposed
method is composed by a two-stage design, to automatically generating image
masks, the first stage implements a fully convolutional networks (FCN) based
segmentation network, the second stage network, a Mask R-CNN based object
detection network, which is trained on the object image masks from FCN output,
the original input image, and additional label information. Through
experimentation, our proposed method can obtain the image masks automatically
to train Mask R-CNN, and it can achieve very high classification accuracy with
an over 90% mean of average precision (mAP) for segmentation
- Abstract(参考訳): 本稿では,最新のMask R-CNN深層学習のための画像マスク自動生成手法を提案する。
The Mask R-CNN method achieves the best results in object detection until now, however, it is very time-consuming and laborious to get the object Masks for training, the proposed method is composed by a two-stage design, to automatically generating image masks, the first stage implements a fully convolutional networks (FCN) based segmentation network, the second stage network, a Mask R-CNN based object detection network, which is trained on the object image masks from FCN output, the original input image, and additional label information.
実験により,提案手法は,Mask R-CNNを訓練するための画像マスクの自動取得が可能であり,セグメンテーションにおける平均精度(mAP)の90%を超える高い分類精度が得られる。
関連論文リスト
- ColorMAE: Exploring data-independent masking strategies in Masked AutoEncoders [53.3185750528969]
Masked AutoEncoders (MAE)は、堅牢な自己管理フレームワークとして登場した。
データに依存しないColorMAEという手法を導入し、ランダムノイズをフィルタすることで異なる二元マスクパターンを生成する。
ランダムマスキングと比較して,下流タスクにおける戦略の優位性を示す。
論文 参考訳(メタデータ) (2024-07-17T22:04:00Z) - Variance-insensitive and Target-preserving Mask Refinement for
Interactive Image Segmentation [68.16510297109872]
ポイントベースのインタラクティブなイメージセグメンテーションは、セマンティックセグメンテーションや画像編集といったアプリケーションにおけるマスクアノテーションの負担を軽減することができる。
本稿では,ユーザ入力の少ないセグメンテーション品質を向上する新しい手法である可変無感・ターゲット保存マスクリファインメントを提案する。
GrabCut、バークレー、SBD、DAVISデータセットの実験は、インタラクティブな画像セグメンテーションにおける我々の手法の最先端性能を実証している。
論文 参考訳(メタデータ) (2023-12-22T02:31:31Z) - DFormer: Diffusion-guided Transformer for Universal Image Segmentation [86.73405604947459]
提案したDFormerは,拡散モデルを用いて画像分割タスクをデノナイズプロセスとみなしている。
我々のDFormerは、ランダムに生成されたマスクの集合から、マスクとそれに対応するカテゴリを直接予測します。
我々のDFormerは、最近の拡散型汎光学分割法Pix2Seq-Dより優れており、MS COCO val 2017セットで3.6%向上している。
論文 参考訳(メタデータ) (2023-06-06T06:33:32Z) - DynaMask: Dynamic Mask Selection for Instance Segmentation [21.50329070835023]
我々は,各インスタンスに最適なマスク解像度を選択するために,計算コストを無視できるマスクスイッチモジュール(MSM)を開発した。
提案手法,すなわちDynaMaskは,高い計算オーバーヘッドで,他の最先端技術よりも一貫した,顕著なパフォーマンス向上を実現する。
論文 参考訳(メタデータ) (2023-03-14T13:01:25Z) - MP-Former: Mask-Piloted Transformer for Image Segmentation [16.620469868310288]
Mask2Formerはデコーダ層間の一貫性のないマスク予測に悩まされている。
本手法では,マスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスのマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスマスをマスマスマスマストした。
論文 参考訳(メタデータ) (2023-03-13T17:57:59Z) - Adversarial Masking for Self-Supervised Learning [81.25999058340997]
自己教師付き学習のためのマスク付き画像モデル(MIM)フレームワークであるADIOSを提案する。
対向目的物を用いてマスキング機能と画像エンコーダを同時に学習する。
さまざまなタスクやデータセットに対する最先端の自己教師付き学習(SSL)メソッドを一貫して改善する。
論文 参考訳(メタデータ) (2022-01-31T10:23:23Z) - Image Generation with Self Pixel-wise Normalization [17.147675335268282]
領域適応正規化(RAN)法はGAN(Generative Adversarial Network)に基づく画像と画像の変換技術で広く用いられている。
本稿では,マスク画像のない画素適応アフィン変換を行うことにより,自己画素ワイド正規化(SPN)と呼ばれる新しい正規化手法を提案する。
論文 参考訳(メタデータ) (2022-01-26T03:14:31Z) - Self-Supervised Visual Representations Learning by Contrastive Mask
Prediction [129.25459808288025]
視覚表現学習のための新しいコントラストマスク予測(CMP)タスクを提案する。
MaskCoは、ビューレベルの機能ではなく、リージョンレベルの機能と対比している。
我々は、ImageNet以外のデータセットのトレーニングでMaskCoを評価し、そのパフォーマンスをMoCo V2と比較した。
論文 参考訳(メタデータ) (2021-08-18T02:50:33Z) - DCT-Mask: Discrete Cosine Transform Mask Representation for Instance
Segmentation [50.70679435176346]
本稿では、離散コサイン変換(DCT)を用いて、高分解能二元格子マスクをコンパクトなベクトルに符号化することで、新しいマスク表現を提案する。
DCT-Maskと呼ばれるこの手法は、ほとんどのピクセルベースのインスタンスセグメンテーション手法に簡単に統合できる。
論文 参考訳(メタデータ) (2020-11-19T15:00:21Z) - Boundary-preserving Mask R-CNN [38.15409855290749]
マスクの局所化精度を向上させるため,概念的にシンプルで効果的なMask R-CNN(BMask R-CNN)を提案する。
BMask R-CNNは、オブジェクト境界とマスクが特徴融合ブロックを介して相互に学習される境界保存マスクヘッドを含む。
ベルとホイッスルがなければ、BMask R-CNNはCOCOデータセットに対してかなりの差でMask R-CNNを上回っている。
論文 参考訳(メタデータ) (2020-07-17T11:54:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。