ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear
Dynamical Systems with Adjustable Boundary Conditions
- URL: http://arxiv.org/abs/2003.01410v2
- Date: Sat, 16 May 2020 00:03:29 GMT
- Title: ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear
Dynamical Systems with Adjustable Boundary Conditions
- Authors: Brijen Thananjeyan, Ashwin Balakrishna, Ugo Rosolia, Joseph E.
Gonzalez, Aaron Ames, Ken Goldberg
- Abstract summary: We present a novel LMPC algorithm, Adjustable Boundary LMPC (ABC-LMPC), which enables rapid adaptation to novel start and goal configurations.
We experimentally demonstrate that the resulting controller adapts to a variety of initial and terminal conditions on 3 continuous control tasks.
- Score: 34.44010424789202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sample-based learning model predictive control (LMPC) strategies have
recently attracted attention due to their desirable theoretical properties and
their good empirical performance on robotic tasks. However, prior analysis of
LMPC controllers for stochastic systems has mainly focused on linear systems in
the iterative learning control setting. We present a novel LMPC algorithm,
Adjustable Boundary Condition LMPC (ABC-LMPC), which enables rapid adaptation
to novel start and goal configurations and theoretically show that the
resulting controller guarantees iterative improvement in expectation for
stochastic nonlinear systems. We present results with a practical instantiation
of this algorithm and experimentally demonstrate that the resulting controller
adapts to a variety of initial and terminal conditions on 3 stochastic
continuous control tasks.
Related papers
- Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Multirotor Ensemble Model Predictive Control I: Simulation Experiments [0.0]
An ensemble-represented Gaussian process performs the backward calculations to determine optimal gains for the initial time.
We construct the EMPC for terminal control and regulation problems and apply it to the control of a simulated, identical-twin study.
arXiv Detail & Related papers (2023-05-22T01:32:17Z) - Neural Lyapunov Differentiable Predictive Control [2.042924346801313]
We present a learning-based predictive control methodology using the differentiable programming framework with probabilistic Lyapunov-based stability guarantees.
In conjunction, our approach jointly learns a Lyapunov function that certifies the regions of state-space with stable dynamics.
arXiv Detail & Related papers (2022-05-22T03:52:27Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Regret Analysis of Learning-Based MPC with Partially-Unknown Cost
Function [5.601217969637838]
exploration/exploitation trade-off is an inherent challenge in data-driven and adaptive control.
We propose the use of a finitehorizon oracle controller with perfect knowledge of all system parameters as a reference for optimal control actions.
We develop learning-based policies that we prove achieve low regret with respect to this oracle finite-horizon controller.
arXiv Detail & Related papers (2021-08-04T22:43:51Z) - Controlling nonlinear dynamical systems into arbitrary states using
machine learning [77.34726150561087]
We propose a novel and fully data driven control scheme which relies on machine learning (ML)
Exploiting recently developed ML-based prediction capabilities of complex systems, we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states coming from any initial state.
Having this highly flexible control scheme with little demands on the amount of required data on hand, we briefly discuss possible applications that range from engineering to medicine.
arXiv Detail & Related papers (2021-02-23T16:58:26Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Learning Constrained Adaptive Differentiable Predictive Control Policies
With Guarantees [1.1086440815804224]
We present differentiable predictive control (DPC), a method for learning constrained neural control policies for linear systems.
We employ automatic differentiation to obtain direct policy gradients by backpropagating the model predictive control (MPC) loss function and constraints penalties through a differentiable closed-loop system dynamics model.
arXiv Detail & Related papers (2020-04-23T14:24:44Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.