Multirotor Ensemble Model Predictive Control I: Simulation Experiments
- URL: http://arxiv.org/abs/2305.12625v1
- Date: Mon, 22 May 2023 01:32:17 GMT
- Title: Multirotor Ensemble Model Predictive Control I: Simulation Experiments
- Authors: Erina Yamaguchi and Sai Ravela
- Abstract summary: An ensemble-represented Gaussian process performs the backward calculations to determine optimal gains for the initial time.
We construct the EMPC for terminal control and regulation problems and apply it to the control of a simulated, identical-twin study.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonlinear receding horizon model predictive control is a powerful approach to
controlling nonlinear dynamical systems. However, typical approaches that use
the Jacobian, adjoint, and forward-backward passes may lose fidelity and
efficacy for highly nonlinear problems. Here, we develop an Ensemble Model
Predictive Control (EMPC) approach wherein the forward model remains fully
nonlinear, and an ensemble-represented Gaussian process performs the backward
calculations to determine optimal gains for the initial time. EMPC admits black
box, possible non-differentiable models, simulations are executable in parallel
over long horizons, and control is uncertainty quantifying and applicable to
stochastic settings. We construct the EMPC for terminal control and regulation
problems and apply it to the control of a quadrotor in a simulated,
identical-twin study. Results suggest that the easily implemented approach is
promising and amenable to controlling autonomous robotic systems with added
state/parameter estimation and parallel computing.
Related papers
- Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
We propose generic model structures combining delay-coordinate encoding of measurements and full-state decoding to integrate reduced Koopman modeling and state estimation.
A case study demonstrates that our approach provides accurate control models and enables real-time capable nonlinear model predictive control of a high-purity cryogenic distillation column.
arXiv Detail & Related papers (2024-01-09T11:54:54Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
We propose a method for synthesising controllers for Markov jump linear systems.
Our method is based on a finite-state abstraction that captures both the discrete (mode-jumping) and continuous (stochastic linear) behaviour of the MJLS.
We apply our method to multiple realistic benchmark problems, in particular, a temperature control and an aerial vehicle delivery problem.
arXiv Detail & Related papers (2022-12-01T17:36:30Z) - Sparsity in Partially Controllable Linear Systems [56.142264865866636]
We study partially controllable linear dynamical systems specified by an underlying sparsity pattern.
Our results characterize those state variables which are irrelevant for optimal control.
arXiv Detail & Related papers (2021-10-12T16:41:47Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
We present a differentiable predictive control (DPC) methodology for learning constrained control laws for unknown nonlinear systems.
DPC poses an approximate solution to multiparametric programming problems emerging from explicit nonlinear model predictive control (MPC)
arXiv Detail & Related papers (2021-07-25T16:47:57Z) - Combining Gaussian processes and polynomial chaos expansions for
stochastic nonlinear model predictive control [0.0]
We introduce a new algorithm to explicitly consider time-invariant uncertainties in optimal control problems.
The main novelty in this paper is to use this combination in an efficient fashion to obtain mean and variance estimates of nonlinear transformations.
It is shown how to formulate both chance-constraints and a probabilistic objective for the optimal control problem.
arXiv Detail & Related papers (2021-03-09T14:25:08Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Adaptive Control and Regret Minimization in Linear Quadratic Gaussian
(LQG) Setting [91.43582419264763]
We propose LqgOpt, a novel reinforcement learning algorithm based on the principle of optimism in the face of uncertainty.
LqgOpt efficiently explores the system dynamics, estimates the model parameters up to their confidence interval, and deploys the controller of the most optimistic model.
arXiv Detail & Related papers (2020-03-12T19:56:38Z) - ABC-LMPC: Safe Sample-Based Learning MPC for Stochastic Nonlinear
Dynamical Systems with Adjustable Boundary Conditions [34.44010424789202]
We present a novel LMPC algorithm, Adjustable Boundary LMPC (ABC-LMPC), which enables rapid adaptation to novel start and goal configurations.
We experimentally demonstrate that the resulting controller adapts to a variety of initial and terminal conditions on 3 continuous control tasks.
arXiv Detail & Related papers (2020-03-03T09:48:22Z) - DISCO: Double Likelihood-free Inference Stochastic Control [29.84276469617019]
We propose to leverage the power of modern simulators and recent techniques in Bayesian statistics for likelihood-free inference.
The posterior distribution over simulation parameters is propagated through a potentially non-analytical model of the system.
Experiments show that the controller proposed attained superior performance and robustness on classical control and robotics tasks.
arXiv Detail & Related papers (2020-02-18T05:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.