Online Sinkhorn: Optimal Transport distances from sample streams
- URL: http://arxiv.org/abs/2003.01415v2
- Date: Thu, 2 Jul 2020 11:32:26 GMT
- Title: Online Sinkhorn: Optimal Transport distances from sample streams
- Authors: Arthur Mensch (DMA), Gabriel Peyr\'e (DMA)
- Abstract summary: This paper introduces a new online estimator of entropy-regularized OT distances between two arbitrary distributions.
Compared to the classic Sinkhorn algorithm, our method leverages new samples at each iteration, which enables a consistent estimation of the true regularized OT distance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal Transport (OT) distances are now routinely used as loss functions in
ML tasks. Yet, computing OT distances between arbitrary (i.e. not necessarily
discrete) probability distributions remains an open problem. This paper
introduces a new online estimator of entropy-regularized OT distances between
two such arbitrary distributions. It uses streams of samples from both
distributions to iteratively enrich a non-parametric representation of the
transportation plan. Compared to the classic Sinkhorn algorithm, our method
leverages new samples at each iteration, which enables a consistent estimation
of the true regularized OT distance. We provide a theoretical analysis of the
convergence of the online Sinkhorn algorithm, showing a nearly-O(1/n)
asymptotic sample complexity for the iterate sequence. We validate our method
on synthetic 1D to 10D data and on real 3D shape data.
Related papers
- Relative-Translation Invariant Wasserstein Distance [82.6068808353647]
We introduce a new family of distances, relative-translation invariant Wasserstein distances ($RW_p$)
We show that $RW_p distances are also real distance metrics defined on the quotient set $mathcalP_p(mathbbRn)/sim$ invariant to distribution translations.
arXiv Detail & Related papers (2024-09-04T03:41:44Z) - Faster Diffusion Sampling with Randomized Midpoints: Sequential and Parallel [10.840582511203024]
We show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
We also show that our algorithm can be parallelized to run in only $widetilde O(log2 d)$ parallel rounds.
arXiv Detail & Related papers (2024-06-03T01:34:34Z) - Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization [38.67914746910537]
We prove an $mathcalO(t-1)$ lower bound rate for the OT map, using the similarity between Laguerre cells estimation and density support estimation.
To nearly achieve the desired fast rate, we design an entropic regularization scheme decreasing with the number of samples.
arXiv Detail & Related papers (2024-05-23T11:46:03Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Optimal sampling of tensor networks targeting wave function's fast
decaying tails [0.0]
We introduce an optimal strategy to sample quantum outcomes of local measurement strings for isometric tensor network states.
The algorithm avoids sample repetition and, thus, is efficient at sampling distribution with exponentially decaying tails.
arXiv Detail & Related papers (2024-01-18T19:00:05Z) - Zeroth-order Riemannian Averaging Stochastic Approximation Algorithms [19.99781875916751]
We show that textttZo-RASA achieves optimal sample complexities for generating $epsilon$-approximation first-order stationary solutions.
We improve the algorithm's practicality by using geometrics and vector transport, instead of exponential mappings and parallel transports.
arXiv Detail & Related papers (2023-09-25T20:13:36Z) - Unsupervised Learning of Sampling Distributions for Particle Filters [80.6716888175925]
We put forward four methods for learning sampling distributions from observed measurements.
Experiments demonstrate that learned sampling distributions exhibit better performance than designed, minimum-degeneracy sampling distributions.
arXiv Detail & Related papers (2023-02-02T15:50:21Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
Under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds.
The object of interest for applications such as generative modeling is the underlying optimal transport map.
We propose the first tractable algorithm for which the statistical $L2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation.
arXiv Detail & Related papers (2021-12-03T13:45:36Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
Algorithm unfolding creates an interpretable and parsimonious neural network architecture by implementing each iteration of a model-based algorithm as a neural layer.
In this paper, leveraging a recent linear algebraic theorem called Gershgorin disc perfect alignment (GDPA), we unroll a projection-free algorithm for semi-definite programming relaxation (SDR) of a binary graph.
Experimental results show that our unrolled network outperformed pure model-based graph classifiers, and achieved comparable performance to pure data-driven networks but using far fewer parameters.
arXiv Detail & Related papers (2021-09-10T07:01:15Z) - MongeNet: Efficient Sampler for Geometric Deep Learning [17.369783838267942]
MongeNet is a fast and optimal transport based sampler that allows for an accurate discretization of a mesh with better approximation properties.
We compare our method to the ubiquitous random uniform sampling and show that the approximation error is almost half with a very small computational overhead.
arXiv Detail & Related papers (2021-04-29T17:59:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.