MongeNet: Efficient Sampler for Geometric Deep Learning
- URL: http://arxiv.org/abs/2104.14554v1
- Date: Thu, 29 Apr 2021 17:59:01 GMT
- Title: MongeNet: Efficient Sampler for Geometric Deep Learning
- Authors: L\'eo Lebrat, Rodrigo Santa Cruz, Clinton Fookes, Olivier Salvado
- Abstract summary: MongeNet is a fast and optimal transport based sampler that allows for an accurate discretization of a mesh with better approximation properties.
We compare our method to the ubiquitous random uniform sampling and show that the approximation error is almost half with a very small computational overhead.
- Score: 17.369783838267942
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in geometric deep-learning introduce complex computational
challenges for evaluating the distance between meshes. From a mesh model, point
clouds are necessary along with a robust distance metric to assess surface
quality or as part of the loss function for training models. Current methods
often rely on a uniform random mesh discretization, which yields irregular
sampling and noisy distance estimation. In this paper we introduce MongeNet, a
fast and optimal transport based sampler that allows for an accurate
discretization of a mesh with better approximation properties. We compare our
method to the ubiquitous random uniform sampling and show that the
approximation error is almost half with a very small computational overhead.
Related papers
- Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - Collapsed Inference for Bayesian Deep Learning [36.1725075097107]
We introduce a novel collapsed inference scheme that performs Bayesian model averaging using collapsed samples.
A collapsed sample represents uncountably many models drawn from the approximate posterior.
Our proposed use of collapsed samples achieves a balance between scalability and accuracy.
arXiv Detail & Related papers (2023-06-16T08:34:42Z) - Aiming towards the minimizers: fast convergence of SGD for
overparametrized problems [25.077446336619378]
We propose a regularity regime which endows the gradient method with the same worst-case complexity as the gradient method.
All existing guarantees require the gradient method to take small steps, thereby resulting in a much slower linear rate of convergence.
We demonstrate that our condition holds when training sufficiently wide feedforward neural networks with a linear output layer.
arXiv Detail & Related papers (2023-06-05T05:21:01Z) - Diffeomorphic Mesh Deformation via Efficient Optimal Transport for Cortical Surface Reconstruction [40.73187749820041]
Mesh deformation plays a pivotal role in many 3D vision tasks including dynamic simulations, rendering, and reconstruction.
A prevalent approach in current deep learning is the set-based approach which measures the discrepancy between two surfaces by comparing two randomly sampled point-clouds from the two meshes with Chamfer pseudo-distance.
We propose a novel metric for learning mesh deformation, defined by sliced Wasserstein distance on meshes represented as probability measures that generalize the set-based approach.
arXiv Detail & Related papers (2023-05-27T19:10:19Z) - Sampling Approximately Low-Rank Ising Models: MCMC meets Variational
Methods [35.24886589614034]
We consider quadratic definite Ising models on the hypercube with a general interaction $J$.
Our general result implies the first time sampling algorithms for low-rank Ising models.
arXiv Detail & Related papers (2022-02-17T21:43:50Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
Particle filtering is used to compute good nonlinear estimates of complex systems.
We show in simulations that the resulting particle filter yields good estimates in a wide range of scenarios.
arXiv Detail & Related papers (2021-10-06T16:58:34Z) - Finding Geometric Models by Clustering in the Consensus Space [61.65661010039768]
We propose a new algorithm for finding an unknown number of geometric models, e.g., homographies.
We present a number of applications where the use of multiple geometric models improves accuracy.
These include pose estimation from multiple generalized homographies; trajectory estimation of fast-moving objects.
arXiv Detail & Related papers (2021-03-25T14:35:07Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Effective Proximal Methods for Non-convex Non-smooth Regularized
Learning [27.775096437736973]
We show that the independent sampling scheme tends to improve performance of the commonly-used uniform sampling scheme.
Our new analysis also derives a speed for the sampling than best one available so far.
arXiv Detail & Related papers (2020-09-14T16:41:32Z) - Making Affine Correspondences Work in Camera Geometry Computation [62.7633180470428]
Local features provide region-to-region rather than point-to-point correspondences.
We propose guidelines for effective use of region-to-region matches in the course of a full model estimation pipeline.
Experiments show that affine solvers can achieve accuracy comparable to point-based solvers at faster run-times.
arXiv Detail & Related papers (2020-07-20T12:07:48Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
This paper proposes LaMI (Latency Model Inpainting), a novel framework to generate a comprehensive-temporal quality framework for wireless access latency of connected vehicles.
LaMI adopts the idea from image inpainting and synthesizing and can reconstruct the missing latency samples by a two-step procedure.
In particular, it first discovers the spatial correlation between samples collected in various regions using a patching-based approach and then feeds the original and highly correlated samples into a Varienational Autocoder (VAE)
arXiv Detail & Related papers (2020-03-16T03:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.