Learning to Generate Time Series Conditioned Graphs with Generative
Adversarial Nets
- URL: http://arxiv.org/abs/2003.01436v2
- Date: Sun, 27 Aug 2023 02:13:06 GMT
- Title: Learning to Generate Time Series Conditioned Graphs with Generative
Adversarial Nets
- Authors: Shanchao Yang, Jing Liu, Kai Wu and Mingming Li
- Abstract summary: We are interested in a novel problem named Time Seriesed Graph Generation: given an input time series, we aim to infer a target relation graph.
To achieve this, we propose a novel Time Series conditioned Graph Generation-Generative Adrial Networks (TSGGGAN)
Extensive experiments on synthetic and real-word gene regulatory networks datasets demonstrate the effectiveness and generalizability of the proposed TSGG-GAN.
- Score: 9.884477413012815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning based approaches have been utilized to model and generate
graphs subjected to different distributions recently. However, they are
typically unsupervised learning based and unconditioned generative models or
simply conditioned on the graph-level contexts, which are not associated with
rich semantic node-level contexts. Differently, in this paper, we are
interested in a novel problem named Time Series Conditioned Graph Generation:
given an input multivariate time series, we aim to infer a target relation
graph modeling the underlying interrelationships between time series with each
node corresponding to each time series. For example, we can study the
interrelationships between genes in a gene regulatory network of a certain
disease conditioned on their gene expression data recorded as time series. To
achieve this, we propose a novel Time Series conditioned Graph
Generation-Generative Adversarial Networks (TSGG-GAN) to handle challenges of
rich node-level context structures conditioning and measuring similarities
directly between graphs and time series. Extensive experiments on synthetic and
real-word gene regulatory networks datasets demonstrate the effectiveness and
generalizability of the proposed TSGG-GAN.
Related papers
- The Heterophilic Graph Learning Handbook: Benchmarks, Models, Theoretical Analysis, Applications and Challenges [101.83124435649358]
Homophily principle, ie nodes with the same labels or similar attributes are more likely to be connected.
Recent work has identified a non-trivial set of datasets where GNN's performance compared to the NN's is not satisfactory.
arXiv Detail & Related papers (2024-07-12T18:04:32Z) - Overcoming Order in Autoregressive Graph Generation [12.351817671944515]
Graph generation is a fundamental problem in various domains, including chemistry and social networks.
Recent work has shown that molecular graph generation using recurrent neural networks (RNNs) is advantageous compared to traditional generative approaches.
arXiv Detail & Related papers (2024-02-04T09:58:22Z) - Graph-Level Embedding for Time-Evolving Graphs [24.194795771873046]
Graph representation learning (also known as network embedding) has been extensively researched with varying levels of granularity.
We present a novel method for temporal graph-level embedding that addresses this gap.
arXiv Detail & Related papers (2023-06-01T01:50:37Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
We design a new model named PoGeVon which leverages variational autoencoder (VAE) to predict missing values over both node time series features and graph structures.
Experiment results demonstrate the effectiveness of our model over baselines.
arXiv Detail & Related papers (2023-05-29T21:11:34Z) - Multivariate Time Series Anomaly Detection via Dynamic Graph Forecasting [0.0]
We propose DyGraphAD, a time series anomaly detection framework based upon a list of dynamic inter-series graphs.
The core idea is to detect anomalies based on the deviation of inter-series relationships and intra-series temporal patterns from normal to anomalous states.
Our numerical experiments on real-world datasets demonstrate that DyGraphAD has superior performance than baseline anomaly detection approaches.
arXiv Detail & Related papers (2023-02-04T01:27:01Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Spatio-Temporal Joint Graph Convolutional Networks for Traffic
Forecasting [75.10017445699532]
Recent have shifted their focus towards formulating traffic forecasting as atemporal graph modeling problem.
We propose a novel approach for accurate traffic forecasting on road networks over multiple future time steps.
arXiv Detail & Related papers (2021-11-25T08:45:14Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.