Entropy Dynamics of Phonon Quantum States Generated by Optical
Excitation of a Two-Level System
- URL: http://arxiv.org/abs/2003.01471v1
- Date: Tue, 3 Mar 2020 12:07:58 GMT
- Title: Entropy Dynamics of Phonon Quantum States Generated by Optical
Excitation of a Two-Level System
- Authors: Thilo Hahn, Daniel Wigger and Tilmann Kuhn
- Abstract summary: In quantum physics, two prototypical model systems stand out due to their wide range of applications.
We consider different optical excitations and decay scenarios of a two-level system (TLS)
Special emphasis is placed on the entropy of the different parts of the system, predominantly the phonons.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In quantum physics, two prototypical model systems stand out due to their
wide range of applications. These are the two-level system (TLS) and the
harmonic oscillator. The former is often an ideal model for confined charge or
spin systems and the latter for lattice vibrations, i.e., phonons. Here, we
couple these two systems, which leads to numerous fascinating physical
phenomena. Practically, we consider different optical excitations and decay
scenarios of a TLS, focusing on the generated dynamics of a single phonon mode
that couples to the TLS. Special emphasis is placed on the entropy of the
different parts of the system, predominantly the phonons. While, without any
decay, the entire system is always in a pure state, resulting in a vanishing
entropy, the complex interplay between the single parts results in
non-vanishing respective entanglement entropies and non-trivial dynamics of
them. Taking a decay of the TLS into account leads to a non-vanishing entropy
of the full system and additional aspects in its dynamics. We demonstrate that
all aspects of the entropy's behavior can be traced back to the purity of the
states and are illustrated by phonon Wigner functions in phase space.
Related papers
- Investigating entropic dynamics of multiqubit cavity QED system [0.0]
Entropic dynamics of a multiqubit cavity quantum electrodynamics system is simulated and various aspects of entropy are explored.
In the modified version of the Tavis-Cummings-Hubbard model, atoms are held in optical cavities through optical tweezers.
The interaction of atom with the cavity results in different electronic transitions and the creation and annihilation of corresponding types of photon.
arXiv Detail & Related papers (2024-05-09T11:51:00Z) - Observation of Hilbert-space fragmentation and fractonic excitations in two-dimensional Hubbard systems [0.0]
We experimentally observe Hilbert space fragmentation (HSF) in a two-dimensional tilted Bose-Hubbard model.
We find uniform initial states with equal particle number and energy differ strikingly in their relaxation dynamics.
Our results mark the first observation of HSF beyond one dimension, as well as the concomitant direct observation of fractons.
arXiv Detail & Related papers (2024-04-23T10:22:40Z) - Exploring Hilbert-Space Fragmentation on a Superconducting Processor [23.39066473461786]
Isolated interacting quantum systems generally thermalize, yet there are several counterexamples for the breakdown of ergodicity.
Recently, ergodicity breaking has been observed in systems subjected to linear potentials, termed Stark many-body localization.
Here, we experimentally explore initial-state dependent dynamics using a ladder-type superconducting processor with up to 24 qubits.
arXiv Detail & Related papers (2024-03-14T04:39:14Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Measuring entanglement entropy and its topological signature for
phononic systems [21.355338659414624]
Entanglement entropy provides insight into the collective degrees of freedom that underlie the systems' complex behaviours.
We report the experimental verification of the predictions by probing the nonlocal correlations in phononic systems.
The progress here opens a frontier where entanglement entropy serves as an important experimental tool in the study of emergent phases and phase transitions.
arXiv Detail & Related papers (2023-12-14T03:30:58Z) - Dephasing and pseudo-coherent quantum dynamics in super-Ohmic
environments [0.0]
We investigate within a spin-boson model the influence of a super-Ohmic environment on the dynamics of a quantum two-state system.
Super-Ohmic purely dephasing fluctuations strongly suppress the amplitude of coherent dynamics at very short times.
The according phase separation line shows also a non-monotonous behaviour, very similar to the pseudo-coherent dynamics.
arXiv Detail & Related papers (2023-03-31T17:11:03Z) - Anatomy of Dynamical Quantum Phase Transitions [0.0]
We study periodic dynamical quantum phase transitions (DQPTs) directly connected to the zeros of a Landau order parameter (OP)
We find that a DQPT signals a change in the dominant contribution to the wave function in the degenerate initial-state manifold.
Our work generalizes previous results and reveals that, in general, periodic DQPTs comprise complex many-body dynamics fundamentally beyond that of two-level systems.
arXiv Detail & Related papers (2022-10-05T18:00:00Z) - Dynamical phase transitions in the collisionless pre-thermal states of
isolated quantum systems: theory and experiments [0.0]
We focus on non-equilibrium transitions characterized by an order parameter.
Our presentation covers both cold atoms as well as condensed matter systems.
We revisit a broad plethora of platforms exhibiting pre-thermal DPTs, which become theoretically tractable in a certain limit.
arXiv Detail & Related papers (2022-01-24T19:00:01Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Peratic Phase Transition by Bulk-to-Surface Response [26.49714398456829]
We show a duality between many-body dynamics and static Hamiltonian ground states for both classical and quantum systems.
Our prediction of peratic phase transition has direct consequences in quantum simulation platforms such as Rydberg atoms and superconducting qubits.
arXiv Detail & Related papers (2021-09-27T18:00:01Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.