Prethermalization by Random Multipolar Driving on a 78-Qubit Superconducting Processor
- URL: http://arxiv.org/abs/2503.21553v2
- Date: Tue, 01 Apr 2025 11:23:17 GMT
- Title: Prethermalization by Random Multipolar Driving on a 78-Qubit Superconducting Processor
- Authors: Zheng-He Liu, Yu Liu, Gui-Han Liang, Cheng-Lin Deng, Keyang Chen, Yun-Hao Shi, Tian-Ming Li, Lv Zhang, Bing-Jie Chen, Cai-Ping Fang, Da'er Feng, Xu-Yang Gu, Yang He, Kaixuan Huang, Hao Li, Hao-Tian Liu, Li Li, Zheng-Yang Mei, Zhen-Yu Peng, Jia-Cheng Song, Ming-Chuan Wang, Shuai-Li Wang, Ziting Wang, Yongxi Xiao, Minke Xu, Yue-Shan Xu, Yu Yan, Yi-Han Yu, Wei-Ping Yuan, Jia-Chi Zhang, Jun-Jie Zhao, Kui Zhao, Si-Yun Zhou, Zheng-An Wang, Xiaohui Song, Ye Tian, Florian Mintert, Johannes Knolle, Roderich Moessner, Yu-Ran Zhang, Pan Zhang, Zhongcheng Xiang, Dongning Zheng, Kai Xu, Hongzheng Zhao, Heng Fan,
- Abstract summary: We report the experimental observation of long-lived prethermal phases in many-body systems with tunable heating rates.<n>With 78 qubits and 137 couplers in a 2D configuration, the entire far-from-equilibrium heating dynamics are beyond the reach of simulation.
- Score: 26.669957183525817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time-dependent drives hold the promise of realizing non-equilibrium many-body phenomena that are absent in undriven systems. Yet, drive-induced heating normally destabilizes the systems, which can be parametrically suppressed in the high-frequency regime by using periodic (Floquet) drives. It remains largely unknown to what extent highly controllable quantum simulators can suppress heating in non-periodically driven systems. Using the 78-qubit superconducting quantum processor, Chuang-tzu 2.0, we report the experimental observation of long-lived prethermal phases in many-body systems with tunable heating rates, driven by structured random protocols, characterized by $n$-multipolar temporal correlations. By measuring both the particle imbalance and subsystem entanglement entropy, we monitor the entire heating process over 1,000 driving cycles and observe the existence of the prethermal plateau. The prethermal lifetime is `doubly tunable': one way by driving frequency, the other by multipolar order; it grows algebraically with the frequency with the universal scaling exponent $2n{+}1$. Using quantum state tomography on different subsystems, we demonstrate a non-uniform spatial entanglement distribution and observe a crossover from area-law to volume-law entanglement scaling. With 78 qubits and 137 couplers in a 2D configuration, the entire far-from-equilibrium heating dynamics are beyond the reach of simulation using tensor-network numerical techniques. Our work highlights superconducting quantum processors as a powerful platform for exploring universal scaling laws and non-equilibrium phases of matter in driven systems in regimes where classical simulation faces formidable challenges.
Related papers
- Prethermalization in the PXP Model under Continuous Quasiperiodic Driving [0.0]
We investigate the dynamics of a quasiperiodically driven Rydberg atom chain in the strong Rydberg blockage regime.
Even without driving, the PXP model exhibits many-body scarring and resultant persistent oscillations.
Our results demonstrate that continuous quasi-periodic drive protocols can provide a promising route to realize prethermal phases of matter.
arXiv Detail & Related papers (2024-06-03T15:30:02Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Unveiling clean two-dimensional discrete time quasicrystals on a digital quantum computer [0.20971479389679332]
We study the relaxation dynamics of initially prepared product states under periodic driving in a kicked Ising model.
We identify the presence of a prethermal regime characterised by magnetisation measurements at twice the period of the Floquet cycle.
Our results provide evidence supporting the realisation of a period-doubling DTC in a two-dimensional system.
arXiv Detail & Related papers (2024-03-25T12:56:13Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Quasi-Floquet prethermalization in a disordered dipolar spin ensemble in
diamond [2.8196336649430482]
Floquet (periodic) driving has emerged as a powerful technique for engineering quantum systems.
We report the observation of Floquet prethermalization in a strongly interacting dipolar spin ensemble in diamond.
In contrast to a single-frequency drive, we find that the existence of prethermalization is extremely sensitive to the smoothness of the applied field.
arXiv Detail & Related papers (2022-12-21T19:00:00Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Emergent pair localization in a many-body quantum spin system [0.0]
Generically, non-integrable quantum systems are expected to thermalize as they comply with the Eigenstate Thermalization Hypothesis.
In the presence of strong disorder, the dynamics can possibly slow down to a degree that systems fail to thermalize on experimentally accessible timescales.
We study an ensemble of Heisenberg spins with a tunable distribution of random coupling strengths realized by a Rydberg quantum simulator.
arXiv Detail & Related papers (2022-07-28T16:31:18Z) - Pulsed multireservoir engineering for a trapped ion with applications to
state synthesis and quantum Otto cycles [68.8204255655161]
Reservoir engineering is a remarkable task that takes dissipation and decoherence as tools rather than impediments.
We develop a collisional model to implement reservoir engineering for the one-dimensional harmonic motion of a trapped ion.
Having multiple internal levels, we show that multiple reservoirs can be engineered, allowing for more efficient synthesis of well-known non-classical states of motion.
arXiv Detail & Related papers (2021-11-26T08:32:39Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Classical Prethermal Phases of Matter [0.0]
We show that prethermal non-equilibrium phases of matter are not restricted to the quantum domain.
We find higher-order as well as fractional discrete time crystals breaking the time-translational symmetry of the drive with unexpectedly large integer as well as fractional periods.
arXiv Detail & Related papers (2021-04-28T18:00:01Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Bridging the Gap Between the Transient and the Steady State of a
Nonequilibrium Quantum System [58.720142291102135]
Many-body quantum systems in nonequilibrium remain one of the frontiers of many-body physics.
Recent work on strongly correlated electrons in DC electric fields illustrated that the system may evolve through successive quasi-thermal states.
We demonstrate an extrapolation scheme that uses the short-time transient calculation to obtain the retarded quantities.
arXiv Detail & Related papers (2021-01-04T06:23:01Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Random multipolar driving: tunably slow heating through spectral
engineering [0.0]
We study heating in quantum many-body systems driven by $n-$multipolar sequences.
A simple theory based on Fermi's golden exponent accounts for this behaviour.
Despite the absence of periodicity in the drive, the prethermal regime can host versatile non-equilibrium phases.
arXiv Detail & Related papers (2020-07-14T18:55:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.