Coherent states of parametric oscillators in the probability
representation of quantum mechanics
- URL: http://arxiv.org/abs/2003.01556v1
- Date: Sun, 1 Mar 2020 12:10:48 GMT
- Title: Coherent states of parametric oscillators in the probability
representation of quantum mechanics
- Authors: Vladimir N. Chernega, Olga V. Man'ko
- Abstract summary: The possibility to describe quantum states by tomographic probability distributions (tomograms) is presented.
The integrals of motion linear in the position and momentum are used to explicitly obtain the tomogram evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glauber coherent states of quantum systems are reviewed. We construct the
tomographic probability distributions of the oscillator states. The possibility
to describe quantum states by tomographic probability distributions (tomograms)
is presented on an example of coherent states of parametric oscillator. The
integrals of motion linear in the position and momentum are used to explicitly
obtain the tomogram evolution expressed in terms of trajectories of classical
parametric oscillator
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Quantum Principle of Least Action in Dynamic Theories With Higher Derivatives [44.99833362998488]
This form is the initial point for the construction of quantum theory.
The correspondence between the new form of quantum theory and "ordinary" quantum mechanics has been established in the local limit.
arXiv Detail & Related papers (2024-04-15T09:29:58Z) - Quantum retrodiction in Gaussian systems and applications in
optomechanics [0.9065034043031668]
The task of quantum state retrodiction is rigorously and elegantly addressed in quantum measurement theory.
This article presents its practical formulation for retrodicting Gaussian quantum states using continuous-time homodyne measurements.
We identify and achievable retrodictive POVMs in common optomechanical operating modes with resonant or off-resonant driving fields.
arXiv Detail & Related papers (2023-09-07T06:36:11Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Continuously Monitored Quantum Systems beyond Lindblad Dynamics [68.8204255655161]
We study the probability distribution of the expectation value of a given observable over the possible quantum trajectories.
The measurements are applied to the entire system, having the effect of projecting the system into a product state.
arXiv Detail & Related papers (2023-05-06T18:09:17Z) - Exact solution and coherent states of an asymmetric oscillator with
position-dependent mass [0.0]
Deformed oscillator with position-dependent mass is studied in classical and quantum formalisms.
Open trajectories in phase space are associated with scattering states and continuous energy spectrum.
An oscillation of the time evolution of the uncertainty relationship is also observed, whose amplitude increases as the deformation increases.
arXiv Detail & Related papers (2023-02-04T14:16:23Z) - Oscillatory states of quantum Kapitza pendulum [4.4884981459499524]
We study quantum mechanics problem described by the Schr"odinger equation with Kapitza pendulum potential.
For the oscillatory states spatially localize around the two stable saddle positions of the potential, we obtain the perturbative eigenvalues and corresponding piecewise wavefunctions.
arXiv Detail & Related papers (2022-08-04T06:34:58Z) - Photon and Photon-Added Intelligent States of Coupled Parametric
Oscillators [0.0]
We derive the linear integrals of motion of the system and relate their covariance matrix to that for the canonical observables.
The operator integrals allows us to construct the intelligent (minimum uncertainty) states of the system and the corresponding photon-added states.
arXiv Detail & Related papers (2021-05-27T18:25:08Z) - Stochastic Path Integral Analysis of the Continuously Monitored Quantum
Harmonic Oscillator [0.0]
We deduce the evolution equations for position and momentum expectation values and the covariance matrix elements from the system's characteristic function.
Our results provide insights into the time dependence of the system during the measurement process, motivating their importance for quantum measurement engine/refrigerator experiments.
arXiv Detail & Related papers (2021-03-10T15:04:49Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.