Exact solution and coherent states of an asymmetric oscillator with
position-dependent mass
- URL: http://arxiv.org/abs/2302.02172v1
- Date: Sat, 4 Feb 2023 14:16:23 GMT
- Title: Exact solution and coherent states of an asymmetric oscillator with
position-dependent mass
- Authors: Bruno G. da Costa, Ignacio S. Gomez, and Biswanath Rath
- Abstract summary: Deformed oscillator with position-dependent mass is studied in classical and quantum formalisms.
Open trajectories in phase space are associated with scattering states and continuous energy spectrum.
An oscillation of the time evolution of the uncertainty relationship is also observed, whose amplitude increases as the deformation increases.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit the problem of the deformed oscillator with position-dependent
mass [da Costa et al., J. Math. Phys. {\bf 62}, 092101 (2021)] in the classical
and quantum formalisms, by introducing the effect of the mass function in both
kinetic and potential energies. The resulting Hamiltonian is mapped into a
Morse oscillator by means of a point canonical transformation from the usual
phase space $(x, p)$ to a deformed one $(x_\gamma, \Pi_\gamma)$. Similar to the
Morse potential, the deformed oscillator presents bound trajectories in phase
space corresponding to an anharmonic oscillatory motion in classical formalism
and, therefore, bound states with a discrete spectrum in quantum formalism. On
the other hand, open trajectories in phase space are associated with scattering
states and continuous energy spectrum. Employing the factorization method, we
investigate the properties of the coherent states, such as the time evolution
and their uncertainties. A fast localization, classical and quantum, is
reported for the coherent states due to the asymmetrical position-dependent
mass. An oscillation of the time evolution of the uncertainty relationship is
also observed, whose amplitude increases as the deformation increases.
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Independent-oscillator model and the quantum Langevin equation for an oscillator: A review [19.372542786476803]
A derivation of the quantum Langevin equation is outlined based on the microscopic model of the heat bath.
In the steady state, we analyze the quantum counterpart of energy equipartition theorem.
The free energy, entropy, specific heat, and third law of thermodynamics are discussed for one-dimensional quantum Brownian motion.
arXiv Detail & Related papers (2023-06-05T07:59:35Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-Hermitian Hamiltonian Deformations in Quantum Mechanics [4.071207179756646]
We introduce a broader class of non-Hermitian Hamiltonian deformations in a nonrelativistic setting.
We relate the time evolution operator and the time-evolving density matrix in the undeformed and deformed theories.
As the dissipative evolution of a quantum system can be conveniently described in Liouville space, we discuss the spectral properties of the Liouvillians.
arXiv Detail & Related papers (2022-11-10T09:25:59Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Comment on `Exact solution of the position-dependent effective mass and
angular frequency Schr\"odinger equation: harmonic oscillator model with
quantized confinement parameter' [0.0]
In a recent paper, Jafarov, Nagiyev, Oste and Van der Jeugt, construct a confined model of the non-relativistic quantum harmonic oscillator.
By using a point canonical transformation starting from the constant-mass Schr"odinger equation for the Rosen-Morse II potential, it is shown here that similar results can be easily obtained without quantizing the confinement parameter.
arXiv Detail & Related papers (2021-05-06T14:20:06Z) - Exact solution of the position-dependent effective mass and angular
frequency Schr\"odinger equation: harmonic oscillator model with quantized
confinement parameter [0.0]
We present an exact solution of a confined model of the non-relativistic quantum harmonic oscillator, where the effective mass and the angular frequency are dependent on the position.
The position-dependent effective mass and angular frequency also become constant under this limit.
arXiv Detail & Related papers (2020-10-09T09:58:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.