Volumetric landmark detection with a multi-scale shift equivariant
neural network
- URL: http://arxiv.org/abs/2003.01639v2
- Date: Fri, 16 Oct 2020 18:40:06 GMT
- Title: Volumetric landmark detection with a multi-scale shift equivariant
neural network
- Authors: Tianyu Ma, Ajay Gupta, Mert R. Sabuncu
- Abstract summary: We propose a multi-scale, end-to-end deep learning method that achieves fast and memory-efficient landmark detection in 3D images.
We evaluate our method for carotid artery bifurcations detection on 263 CT volumes and achieve a better than state-of-the-art accuracy with mean Euclidean distance error of 2.81mm.
- Score: 16.114319747246334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks yield promising results in a wide range of computer
vision applications, including landmark detection. A major challenge for
accurate anatomical landmark detection in volumetric images such as clinical CT
scans is that large-scale data often constrain the capacity of the employed
neural network architecture due to GPU memory limitations, which in turn can
limit the precision of the output. We propose a multi-scale, end-to-end deep
learning method that achieves fast and memory-efficient landmark detection in
3D images. Our architecture consists of blocks of shift-equivariant networks,
each of which performs landmark detection at a different spatial scale. These
blocks are connected from coarse to fine-scale, with differentiable resampling
layers, so that all levels can be trained together. We also present a noise
injection strategy that increases the robustness of the model and allows us to
quantify uncertainty at test time. We evaluate our method for carotid artery
bifurcations detection on 263 CT volumes and achieve a better than
state-of-the-art accuracy with mean Euclidean distance error of 2.81mm.
Related papers
- Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Acute ischemic stroke lesion segmentation in non-contrast CT images
using 3D convolutional neural networks [0.0]
We propose an automatic algorithm aimed at volumetric segmentation of acute ischemic stroke lesion in non-contrast computed tomography brain 3D images.
Our deep-learning approach is based on the popular 3D U-Net convolutional neural network architecture.
arXiv Detail & Related papers (2023-01-17T10:39:39Z) - Slice-level Detection of Intracranial Hemorrhage on CT Using Deep
Descriptors of Adjacent Slices [0.31317409221921133]
We propose a new strategy to train emphslice-level classifiers on CT scans based on the descriptors of the adjacent slices along the axis.
We obtain a single model in the top 4% best-performing solutions of the RSNA Intracranial Hemorrhage dataset challenge.
The proposed method is general and can be applied to other 3D medical diagnosis tasks such as MRI imaging.
arXiv Detail & Related papers (2022-08-05T23:20:37Z) - 3D unsupervised anomaly detection and localization through virtual
multi-view projection and reconstruction: Clinical validation on low-dose
chest computed tomography [2.2302915692528367]
We propose a method based on a deep neural network for computer-aided diagnosis called virtual multi-view projection and reconstruction.
The proposed method improves the patient-level anomaly detection by 10% compared with a gold standard based on supervised learning.
It localizes the anomaly region with 93% accuracy, demonstrating its high performance.
arXiv Detail & Related papers (2022-06-18T13:22:00Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Neural networks for classification of strokes in electrical impedance
tomography on a 3D head model [0.0]
We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes.
The networks are trained on a dataset with $40,000$ samples of synthetic electrode measurements.
We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling.
arXiv Detail & Related papers (2020-11-05T14:22:05Z) - Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans [0.0]
We present an algorithm for multi-scale tumor (chimeric cell) detection in high resolution slide scans.
Our approach modifies the effective receptive field at different layers in a CNN so that objects with a broad range of varying scales can be detected in a single forward pass.
arXiv Detail & Related papers (2020-10-01T18:56:46Z) - 4D Spatio-Temporal Convolutional Networks for Object Position Estimation
in OCT Volumes [69.62333053044712]
3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single OCT images.
We extend 3D CNNs to 4D-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking.
arXiv Detail & Related papers (2020-07-02T12:02:20Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.