Neural networks for classification of strokes in electrical impedance
tomography on a 3D head model
- URL: http://arxiv.org/abs/2011.02852v2
- Date: Mon, 30 Aug 2021 12:30:40 GMT
- Title: Neural networks for classification of strokes in electrical impedance
tomography on a 3D head model
- Authors: Valentina Candiani and Matteo Santacesaria
- Abstract summary: We employ two neural network architectures -- a fully connected and a convolutional one -- for the classification of hemorrhagic and ischemic strokes.
The networks are trained on a dataset with $40,000$ samples of synthetic electrode measurements.
We then test the networks on several datasets of unseen EIT data, with more complex stroke modeling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of the detection of brain hemorrhages from three
dimensional (3D) electrical impedance tomography (EIT) measurements. This is a
condition requiring urgent treatment for which EIT might provide a portable and
quick diagnosis. We employ two neural network architectures -- a fully
connected and a convolutional one -- for the classification of hemorrhagic and
ischemic strokes. The networks are trained on a dataset with $40\,000$ samples
of synthetic electrode measurements generated with the complete electrode model
on realistic heads with a 3-layer structure. We consider changes in head
anatomy and layers, electrode position, measurement noise and conductivity
values. We then test the networks on several datasets of unseen EIT data, with
more complex stroke modeling (different shapes and volumes), higher levels of
noise and different amounts of electrode misplacement. On most test datasets we
achieve $\geq 90\%$ average accuracy with fully connected neural networks,
while the convolutional ones display an average accuracy $\geq 80\%$. Despite
the use of simple neural network architectures, the results obtained are very
promising and motivate the applications of EIT-based classification methods on
real phantoms and ultimately on human patients.
Related papers
- Neural decoding from stereotactic EEG: accounting for electrode variability across subjects [21.28778005847666]
We introduce seegnificant: a training framework that can be used to decode behavior across subjects using sEEG data.
We construct a multi-subject model trained on the combined data from 21 subjects performing a behavioral task.
arXiv Detail & Related papers (2024-11-01T17:58:01Z) - RISE-iEEG: Robust to Inter-Subject Electrodes Implantation Variability iEEG Classifier [0.0]
RISE-iEEG stands for Robust Inter-Subject Electrode Implantation Variability iEEG.
We developed an iEEG decoder model that can be applied across multiple patients' data without requiring the coordinates of electrode for each patient.
Our analysis shows that the performance of RISE-iEEG is 10% higher than that of HTNet and EEGNet in terms of F1 score.
arXiv Detail & Related papers (2024-08-12T18:33:19Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
Entropy and mutual information in neural networks provide rich information on the learning process.
We leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures.
We show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data.
arXiv Detail & Related papers (2023-12-04T01:32:42Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - MP-SeizNet: A Multi-Path CNN Bi-LSTM Network for Seizure-Type
Classification Using EEG [2.1915057426589746]
Seizure type identification is essential for the treatment and management of epileptic patients.
We present a novel multi-path seizure-type classification deep learning network (MP-SeizNet)
MP-SeizNet consists of a convolutional neural network (CNN) and a bidirectional long short-term memory neural network (Bi-LSTM) with an attention mechanism.
arXiv Detail & Related papers (2022-11-09T01:07:20Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
We propose a two-stream graph convolutional network (TSGCNet) to learn multi-view information from different geometric attributes.
We evaluate our proposed TSGCNet on a real-patient dataset of dental models acquired by 3D intraoral scanners.
arXiv Detail & Related papers (2020-12-26T08:02:56Z) - GCNs-Net: A Graph Convolutional Neural Network Approach for Decoding
Time-resolved EEG Motor Imagery Signals [8.19994663278877]
A novel deep learning framework based on the graph convolutional neural networks (GCNs) is presented to enhance the decoding performance of raw EEG signals.
The introduced approach has been shown to converge for both personalized and group-wise predictions.
arXiv Detail & Related papers (2020-06-16T04:57:12Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Volumetric landmark detection with a multi-scale shift equivariant
neural network [16.114319747246334]
We propose a multi-scale, end-to-end deep learning method that achieves fast and memory-efficient landmark detection in 3D images.
We evaluate our method for carotid artery bifurcations detection on 263 CT volumes and achieve a better than state-of-the-art accuracy with mean Euclidean distance error of 2.81mm.
arXiv Detail & Related papers (2020-03-03T17:06:19Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.