Batch Normalization Provably Avoids Rank Collapse for Randomly
Initialised Deep Networks
- URL: http://arxiv.org/abs/2003.01652v3
- Date: Thu, 11 Jun 2020 21:14:09 GMT
- Title: Batch Normalization Provably Avoids Rank Collapse for Randomly
Initialised Deep Networks
- Authors: Hadi Daneshmand, Jonas Kohler, Francis Bach, Thomas Hofmann, Aurelien
Lucchi
- Abstract summary: Batch normalization is an effective strategy to avoid rank collapse for both linear and ReLU networks.
We derive a meaningful lower rank bound in deep linear networks.
Empirically, we also demonstrate that this rank robustness generalizes to ReLU nets.
- Score: 15.499554384036673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomly initialized neural networks are known to become harder to train with
increasing depth, unless architectural enhancements like residual connections
and batch normalization are used. We here investigate this phenomenon by
revisiting the connection between random initialization in deep networks and
spectral instabilities in products of random matrices. Given the rich
literature on random matrices, it is not surprising to find that the rank of
the intermediate representations in unnormalized networks collapses quickly
with depth. In this work we highlight the fact that batch normalization is an
effective strategy to avoid rank collapse for both linear and ReLU networks.
Leveraging tools from Markov chain theory, we derive a meaningful lower rank
bound in deep linear networks. Empirically, we also demonstrate that this rank
robustness generalizes to ReLU nets. Finally, we conduct an extensive set of
experiments on real-world data sets, which confirm that rank stability is
indeed a crucial condition for training modern-day deep neural architectures.
Related papers
- Implicit Bias of Gradient Descent for Two-layer ReLU and Leaky ReLU
Networks on Nearly-orthogonal Data [66.1211659120882]
The implicit bias towards solutions with favorable properties is believed to be a key reason why neural networks trained by gradient-based optimization can generalize well.
While the implicit bias of gradient flow has been widely studied for homogeneous neural networks (including ReLU and leaky ReLU networks), the implicit bias of gradient descent is currently only understood for smooth neural networks.
arXiv Detail & Related papers (2023-10-29T08:47:48Z) - Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Neural Networks with Sparse Activation Induced by Large Bias: Tighter Analysis with Bias-Generalized NTK [86.45209429863858]
We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime.
We show that the neural networks possess a different limiting kernel which we call textitbias-generalized NTK
We also study various properties of the neural networks with this new kernel.
arXiv Detail & Related papers (2023-01-01T02:11:39Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - Training invariances and the low-rank phenomenon: beyond linear networks [44.02161831977037]
We show that when one trains a deep linear network with logistic or exponential loss on linearly separable data, the weights converge to rank-$1$ matrices.
This is the first time a low-rank phenomenon is proven rigorously for nonlinear ReLU-activated feedforward networks.
Our proof relies on a specific decomposition of the network into a multilinear function and another ReLU network whose weights are constant under a certain parameter directional convergence.
arXiv Detail & Related papers (2022-01-28T07:31:19Z) - Path Regularization: A Convexity and Sparsity Inducing Regularization
for Parallel ReLU Networks [75.33431791218302]
We study the training problem of deep neural networks and introduce an analytic approach to unveil hidden convexity in the optimization landscape.
We consider a deep parallel ReLU network architecture, which also includes standard deep networks and ResNets as its special cases.
arXiv Detail & Related papers (2021-10-18T18:00:36Z) - Vanishing Curvature and the Power of Adaptive Methods in Randomly
Initialized Deep Networks [30.467121747150816]
This paper revisits the so-called vanishing gradient phenomenon, which commonly occurs in deep randomly neural networks.
We first show that vanishing gradients cannot be circumvented when the network width scales with less than O(depth)
arXiv Detail & Related papers (2021-06-07T16:29:59Z) - On the Explicit Role of Initialization on the Convergence and Implicit
Bias of Overparametrized Linear Networks [1.0323063834827415]
We present a novel analysis of single-hidden-layer linear networks trained under gradient flow.
We show that the squared loss converges exponentially to its optimum.
We derive a novel non-asymptotic upper-bound on the distance between the trained network and the min-norm solution.
arXiv Detail & Related papers (2021-05-13T15:13:51Z) - Gradient Descent for Deep Matrix Factorization: Dynamics and Implicit
Bias towards Low Rank [1.9350867959464846]
In deep learning, gradientdescent tends to prefer solutions which generalize well.
In this paper we analyze the dynamics of gradient descent in the simplifiedsetting of linear networks and of an estimation problem.
arXiv Detail & Related papers (2020-11-27T15:08:34Z) - Compressive Sensing and Neural Networks from a Statistical Learning
Perspective [4.561032960211816]
We present a generalization error analysis for a class of neural networks suitable for sparse reconstruction from few linear measurements.
Under realistic conditions, the generalization error scales only logarithmically in the number of layers, and at most linear in number of measurements.
arXiv Detail & Related papers (2020-10-29T15:05:43Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.