Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are
Failing to Reproduce Spectral Distributions
- URL: http://arxiv.org/abs/2003.01826v1
- Date: Tue, 3 Mar 2020 23:04:33 GMT
- Title: Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are
Failing to Reproduce Spectral Distributions
- Authors: Ricard Durall and Margret Keuper and Janis Keuper
- Abstract summary: We show that up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly.
We propose to add a novel spectral regularization term to the training optimization objective.
We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors.
- Score: 13.439086686599891
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative convolutional deep neural networks, e.g. popular GAN
architectures, are relying on convolution based up-sampling methods to produce
non-scalar outputs like images or video sequences. In this paper, we show that
common up-sampling methods, i.e. known as up-convolution or transposed
convolution, are causing the inability of such models to reproduce spectral
distributions of natural training data correctly. This effect is independent of
the underlying architecture and we show that it can be used to easily detect
generated data like deepfakes with up to 100% accuracy on public benchmarks.
To overcome this drawback of current generative models, we propose to add a
novel spectral regularization term to the training optimization objective. We
show that this approach not only allows to train spectral consistent GANs that
are avoiding high frequency errors. Also, we show that a correct approximation
of the frequency spectrum has positive effects on the training stability and
output quality of generative networks.
Related papers
- Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
This paper proposes an Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network (ASWT-SGNN)
ASWT-SGNN accurately approximates the filter function in high-density spectral regions, avoiding costly eigen-decomposition.
It achieves comparable performance to state-of-the-art models in node classification tasks.
arXiv Detail & Related papers (2023-12-10T03:07:42Z) - Frequency Compensated Diffusion Model for Real-scene Dehazing [6.105813272271171]
We consider a dehazing framework based on conditional diffusion models for improved generalization to real haze.
The proposed dehazing diffusion model significantly outperforms state-of-the-art methods on real-world images.
arXiv Detail & Related papers (2023-08-21T06:50:44Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
Deep neural networks achieve superior performance for learning from independent and identically distributed (i.i.d.) data.
However, their performance deteriorates significantly when handling out-of-distribution (OoD) data.
We develop a simple yet effective method called Generative Interpolation to fuse generative models trained from multiple domains for synthesizing diverse OoD samples.
arXiv Detail & Related papers (2023-07-23T03:53:53Z) - A Scalable Walsh-Hadamard Regularizer to Overcome the Low-degree
Spectral Bias of Neural Networks [79.28094304325116]
Despite the capacity of neural nets to learn arbitrary functions, models trained through gradient descent often exhibit a bias towards simpler'' functions.
We show how this spectral bias towards low-degree frequencies can in fact hurt the neural network's generalization on real-world datasets.
We propose a new scalable functional regularization scheme that aids the neural network to learn higher degree frequencies.
arXiv Detail & Related papers (2023-05-16T20:06:01Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
Deep learning methods are state-of-the-art for spectral image (SI) computational tasks.
GANs enable diverse augmentation by learning and sampling from the data distribution.
GAN-based SI generation is challenging since the high-dimensionality nature of this kind of data hinders the convergence of the GAN training yielding to suboptimal generation.
We propose a statistical regularization to control the low-dimensional representation variance for the autoencoder training and to achieve high diversity of samples generated with the GAN.
arXiv Detail & Related papers (2023-04-29T00:25:02Z) - SpecGrad: Diffusion Probabilistic Model based Neural Vocoder with
Adaptive Noise Spectral Shaping [51.698273019061645]
SpecGrad adapts the diffusion noise so that its time-varying spectral envelope becomes close to the conditioning log-mel spectrogram.
It is processed in the time-frequency domain to keep the computational cost almost the same as the conventional DDPM-based neural vocoders.
arXiv Detail & Related papers (2022-03-31T02:08:27Z) - Simpler is better: spectral regularization and up-sampling techniques
for variational autoencoders [1.2234742322758418]
characterization of the spectral behavior of generative models based on neural networks remains an open issue.
Recent research has focused heavily on generative adversarial networks and the high-frequency discrepancies between real and generated images.
We propose a simple 2D Fourier transform-based spectral regularization loss for the Variational Autoencoders (VAEs)
arXiv Detail & Related papers (2022-01-19T11:49:57Z) - Distribution Mismatch Correction for Improved Robustness in Deep Neural
Networks [86.42889611784855]
normalization methods increase the vulnerability with respect to noise and input corruptions.
We propose an unsupervised non-parametric distribution correction method that adapts the activation distribution of each layer.
In our experiments, we empirically show that the proposed method effectively reduces the impact of intense image corruptions.
arXiv Detail & Related papers (2021-10-05T11:36:25Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.