Frequency Compensated Diffusion Model for Real-scene Dehazing
- URL: http://arxiv.org/abs/2308.10510v2
- Date: Fri, 22 Sep 2023 23:43:32 GMT
- Title: Frequency Compensated Diffusion Model for Real-scene Dehazing
- Authors: Jing Wang, Songtao Wu, Kuanhong Xu, and Zhiqiang Yuan
- Abstract summary: We consider a dehazing framework based on conditional diffusion models for improved generalization to real haze.
The proposed dehazing diffusion model significantly outperforms state-of-the-art methods on real-world images.
- Score: 6.105813272271171
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to distribution shift, deep learning based methods for image dehazing
suffer from performance degradation when applied to real-world hazy images. In
this paper, we consider a dehazing framework based on conditional diffusion
models for improved generalization to real haze. First, we find that optimizing
the training objective of diffusion models, i.e., Gaussian noise vectors, is
non-trivial. The spectral bias of deep networks hinders the higher frequency
modes in Gaussian vectors from being learned and hence impairs the
reconstruction of image details. To tackle this issue, we design a network
unit, named Frequency Compensation block (FCB), with a bank of filters that
jointly emphasize the mid-to-high frequencies of an input signal. We
demonstrate that diffusion models with FCB achieve significant gains in both
perceptual and distortion metrics. Second, to further boost the generalization
performance, we propose a novel data synthesis pipeline, HazeAug, to augment
haze in terms of degree and diversity. Within the framework, a solid baseline
for blind dehazing is set up where models are trained on synthetic hazy-clean
pairs, and directly generalize to real data. Extensive evaluations show that
the proposed dehazing diffusion model significantly outperforms
state-of-the-art methods on real-world images. Our code is at
https://github.com/W-Jilly/frequency-compensated-diffusion-model-pytorch.
Related papers
- TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Iterative Token Evaluation and Refinement for Real-World
Super-Resolution [77.74289677520508]
Real-world image super-resolution (RWSR) is a long-standing problem as low-quality (LQ) images often have complex and unidentified degradations.
We propose an Iterative Token Evaluation and Refinement framework for RWSR.
We show that ITER is easier to train than Generative Adversarial Networks (GANs) and more efficient than continuous diffusion models.
arXiv Detail & Related papers (2023-12-09T17:07:32Z) - Recovering high-quality FODs from a reduced number of diffusion-weighted
images using a model-driven deep learning architecture [0.0]
We propose a model-driven deep learning FOD reconstruction architecture.
It ensures intermediate and output FODs produced by the network are consistent with the input DWI signals.
Our results show that the model-based deep learning architecture achieves competitive performance compared to a state-of-the-art FOD super-resolution network, FOD-Net.
arXiv Detail & Related papers (2023-07-28T02:47:34Z) - ExposureDiffusion: Learning to Expose for Low-light Image Enhancement [87.08496758469835]
This work addresses the issue by seamlessly integrating a diffusion model with a physics-based exposure model.
Our method obtains significantly improved performance and reduced inference time compared with vanilla diffusion models.
The proposed framework can work with both real-paired datasets, SOTA noise models, and different backbone networks.
arXiv Detail & Related papers (2023-07-15T04:48:35Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
Diffusion models have achieved promising results in image restoration tasks, yet suffer from time-consuming, excessive computational resource consumption, and unstable restoration.
We propose a robust and efficient Diffusion-based Low-Light image enhancement approach, dubbed DiffLL.
arXiv Detail & Related papers (2023-06-01T03:08:28Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
Diffusion models (DMs) have been introduced in image deblurring and exhibited promising performance.
We propose the Hierarchical Integration Diffusion Model (HI-Diff), for realistic image deblurring.
Experiments on synthetic and real-world blur datasets demonstrate that our HI-Diff outperforms state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T12:18:20Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - Reflected Diffusion Models [93.26107023470979]
We present Reflected Diffusion Models, which reverse a reflected differential equation evolving on the support of the data.
Our approach learns the score function through a generalized score matching loss and extends key components of standard diffusion models.
arXiv Detail & Related papers (2023-04-10T17:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.