論文の概要: Applications of deep learning in stock market prediction: recent
progress
- arxiv url: http://arxiv.org/abs/2003.01859v1
- Date: Sat, 29 Feb 2020 03:37:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 21:01:00.594036
- Title: Applications of deep learning in stock market prediction: recent
progress
- Title(参考訳): 深層学習の株式市場予測への応用--最近の進歩
- Authors: Weiwei Jiang
- Abstract要約: この調査は、株式市場予測のためのディープラーニングモデルに関する最近の研究の最新のレビューを提供する。
私たちは、異なるデータソース、さまざまなニューラルネットワーク構造、一般的なメトリクスを分類するだけでなく、実装と評価も分類します。
私たちのゴールは、興味のある研究者が最新の進歩と同期するのを助けると同時に、以前の研究をベースラインとして簡単に再現できるようにすることです。
- 参考スコア(独自算出の注目度): 5.780772209241294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stock market prediction has been a classical yet challenging problem, with
the attention from both economists and computer scientists. With the purpose of
building an effective prediction model, both linear and machine learning tools
have been explored for the past couple of decades. Lately, deep learning models
have been introduced as new frontiers for this topic and the rapid development
is too fast to catch up. Hence, our motivation for this survey is to give a
latest review of recent works on deep learning models for stock market
prediction. We not only category the different data sources, various neural
network structures, and common used evaluation metrics, but also the
implementation and reproducibility. Our goal is to help the interested
researchers to synchronize with the latest progress and also help them to
easily reproduce the previous studies as baselines. Base on the summary, we
also highlight some future research directions in this topic.
- Abstract(参考訳): 株式市場の予測は古典的だが難しい問題であり、経済学者もコンピューター科学者も注目している。
効果的な予測モデルを構築するために、線形ツールと機械学習ツールの両方が過去数十年にわたって研究されてきた。
近年、このトピックの新しいフロンティアとしてディープラーニングモデルが導入されており、迅速な開発が追いつくには早すぎる。
したがって、この調査の動機は、株式市場予測のためのディープラーニングモデルに関する最近の研究の最新レビューを提供することです。
私たちは、異なるデータソース、さまざまなニューラルネットワーク構造、一般的な評価指標だけでなく、実装と再現性も分類します。
私たちの目標は、関心のある研究者が最新の進歩と同期し、また、過去の研究をベースラインとして簡単に再現できるようにすることです。
要約に基づいて、このトピックにおける今後の研究の方向性も強調する。
関連論文リスト
- Human Action Anticipation: A Survey [86.415721659234]
行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
論文 参考訳(メタデータ) (2024-10-17T21:37:40Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
このサーベイは、シーケンシャルなデータ処理の反復モデルに基づく最新のアプローチの詳細な概要を提供する。
新たなイメージは、標準のバックプロパゲーション・オブ・タイムから外れた学習アルゴリズムによって構成される、新しいルートを考える余地があることを示唆している。
論文 参考訳(メタデータ) (2024-06-13T12:51:22Z) - On the Resurgence of Recurrent Models for Long Sequences -- Survey and
Research Opportunities in the Transformer Era [59.279784235147254]
この調査は、Recurrenceの統一の傘の下に構築されたこれらのトレンドの概要を提供することを目的としている。
長いシーケンスを処理するという考え方を捨てる際に顕著になる新しい研究機会を強調している。
論文 参考訳(メタデータ) (2024-02-12T23:55:55Z) - A Survey of Deep Learning and Foundation Models for Time Series
Forecasting [16.814826712022324]
ディープラーニングは多くのアプリケーションドメインにうまく適用されているが、その利点は時系列予測に現れるのが遅かった。
広範な事前学習を伴う基礎モデルにより、モデルはパターンを理解し、新しい関連する問題に適用可能な知識を得ることができる。
このような知識を深層学習モデルに活用または注入する方法について研究が進行中である。
論文 参考訳(メタデータ) (2024-01-25T03:14:07Z) - A Survey on Service Route and Time Prediction in Instant Delivery:
Taxonomy, Progress, and Prospects [58.746820564288846]
Route&Time Prediction (RTP) は、労働者の到着時間だけでなく、将来のサービス経路を推定することを目的としている。
これまで多くのアルゴリズムが開発されてきたが、この領域の研究者を導くための体系的で包括的な調査は行われていない。
提案手法は,2つの基準に基づいて分類される: (i) タスクのタイプ, (i) 時間のみの予測, (ii) シーケンスベースモデルとグラフベースモデルを含むモデルアーキテクチャ, (iii) 教師付き学習(SL) とDeep Reinforcementを含む学習パラダイム。
論文 参考訳(メタデータ) (2023-09-03T14:43:33Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
ディープラーニングモデルは、価格予測タスクのための従来の統計モデルと機械学習モデルを置き換えるものだ。
このレビューは、ディープラーニングに基づく予測モデルについて深く掘り下げ、モデルアーキテクチャ、実践的応用、およびそれぞれの利点と欠点に関する情報を提示する。
この貢献には、価格予測のための複雑な構造を持つディープラーニングモデルの有効性を検討するなど、将来の研究に向けた潜在的方向性も含まれている。
論文 参考訳(メタデータ) (2023-04-21T03:46:09Z) - Improving Prediction Performance and Model Interpretability through
Attention Mechanisms from Basic and Applied Research Perspectives [3.553493344868414]
この論文は著者の論文の要約に基づいている。
ディープラーニングモデルは、従来の機械学習モデルよりも予測性能がはるかに高い。
特定の予測プロセスの解釈や説明は依然として困難である。
論文 参考訳(メタデータ) (2023-03-24T16:24:08Z) - Deep networks for system identification: a Survey [56.34005280792013]
システム識別は、入力出力データから動的システムの数学的記述を学習する。
同定されたモデルの主な目的は、以前の観測から新しいデータを予測することである。
我々は、フィードフォワード、畳み込み、リカレントネットワークなどの文献で一般的に採用されているアーキテクチャについて論じる。
論文 参考訳(メタデータ) (2023-01-30T12:38:31Z) - Stock Market Prediction via Deep Learning Techniques: A Survey [24.88558334340833]
本稿では,ディープラーニング技術に着目した株式市場予測に関する研究の概要について概説する。
株式市場予測の詳細なサブタスクを4つ提示し、最先端モデルを要約する新しい分類法を提案する。
さらに、株式市場でよく使われるデータセットと評価指標について詳細な統計情報を提供する。
論文 参考訳(メタデータ) (2022-12-24T11:32:17Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Deep Learning for Road Traffic Forecasting: Does it Make a Difference? [6.220008946076208]
本稿では,このITS研究領域におけるDeep Learningの活用に言及した技術の現状を批判的に分析することに焦点を当てる。
後続の批判分析は、交通予測のためのディープラーニングの問題について、質問を定式化し、必要な議論を引き起こす。
論文 参考訳(メタデータ) (2020-12-02T15:56:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。