論文の概要: Human Action Anticipation: A Survey
- arxiv url: http://arxiv.org/abs/2410.14045v1
- Date: Thu, 17 Oct 2024 21:37:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-21 14:26:22.983090
- Title: Human Action Anticipation: A Survey
- Title(参考訳): 人間の行動予測:調査
- Authors: Bolin Lai, Sam Toyer, Tushar Nagarajan, Rohit Girdhar, Shengxin Zha, James M. Rehg, Kris Kitani, Kristen Grauman, Ruta Desai, Miao Liu,
- Abstract要約: 行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
- 参考スコア(独自算出の注目度): 86.415721659234
- License:
- Abstract: Predicting future human behavior is an increasingly popular topic in computer vision, driven by the interest in applications such as autonomous vehicles, digital assistants and human-robot interactions. The literature on behavior prediction spans various tasks, including action anticipation, activity forecasting, intent prediction, goal prediction, and so on. Our survey aims to tie together this fragmented literature, covering recent technical innovations as well as the development of new large-scale datasets for model training and evaluation. We also summarize the widely-used metrics for different tasks and provide a comprehensive performance comparison of existing approaches on eleven action anticipation datasets. This survey serves as not only a reference for contemporary methodologies in action anticipation, but also a guideline for future research direction of this evolving landscape.
- Abstract(参考訳): 将来の人間の行動を予測することは、自動運転車やデジタルアシスタント、人間とロボットの相互作用といった応用への関心から、コンピュータビジョンにおいてますます人気が高まっているトピックである。
行動予測に関する文献は、行動予測、活動予測、意図予測、目標予測など、様々なタスクにまたがる。
我々の調査は、この断片化された文献を結びつけることを目的としており、最近の技術革新とモデルトレーニングと評価のための新しい大規模データセットの開発をカバーしています。
また、さまざまなタスクで広く使用されているメトリクスを要約し、11のアクション予測データセットに対する既存のアプローチの包括的なパフォーマンス比較を提供する。
この調査は、行動予測における現代の方法論の参考となるだけでなく、この進化する景観の今後の研究方向性の指針でもある。
関連論文リスト
- Data Augmentation in Human-Centric Vision [54.97327269866757]
本研究では,人間中心型視覚タスクにおけるデータ拡張手法の包括的分析を行う。
それは、人物のReID、人間のパーシング、人間のポーズ推定、歩行者検出など、幅広い研究領域に展開している。
我々の研究は、データ拡張手法をデータ生成とデータ摂動の2つの主なタイプに分類する。
論文 参考訳(メタデータ) (2024-03-13T16:05:18Z) - Recent Advances in Deterministic Human Motion Prediction: A Review [2.965405736351051]
人動予測技術は、人間とコンピュータの相互作用、自律運転、スポーツ分析、人的追跡など、様々な分野で徐々に普及してきた。
この記事では、それぞれの利点とデメリットとともに、このドメインの共通モデルアーキテクチャを紹介します。
また、最近の研究革新を体系的に要約し、これらの分野における関連論文の詳細な議論に焦点を当てている。
論文 参考訳(メタデータ) (2023-12-11T07:54:42Z) - A Survey on Deep Learning Techniques for Action Anticipation [12.336150312807561]
本稿では,近年の行動予測アルゴリズムの進歩を概観する。
我々はこれらの手法を主要な貢献に応じて分類し、それらを表形式で要約する。
我々は、アクション予測に使用される一般的な評価指標とデータセットを掘り下げ、体系的な議論で将来の方向性を提供する。
論文 参考訳(メタデータ) (2023-09-29T14:07:56Z) - A-ACT: Action Anticipation through Cycle Transformations [89.83027919085289]
未来を予測できる人間の能力が、機械学習アルゴリズムにどのように移行できるかを分析するために、一歩後退します。
人間の心理学に関する最近の研究は、発生を予測して、人間の脳が両方のシステムにカウントされていることを説明している。
本研究では,行動予測作業における各システムの影響について検討し,学習フレームワークに統合するためのパラダイムを導入する。
論文 参考訳(メタデータ) (2022-04-02T21:50:45Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
近年,非言語的社会的行動予測が研究コミュニティの関心を集めている。
人間とロボットの相互作用や社会的に認識された人間のモーション生成への直接的な応用は、非常に魅力的な分野である。
本稿では,複数の対話エージェントに対する行動予測問題を,社会的信号予測と人間の動作予測の分野の統合を目的とした汎用的な方法で定義する。
論文 参考訳(メタデータ) (2022-03-04T18:25:30Z) - 3D Human Motion Prediction: A Survey [23.605334184939164]
人間の3D動作予測は、与えられたシーケンスから将来のポーズを予測するもので、コンピュータビジョンとマシンインテリジェンスにおいて大きな重要性と課題である。
既存の公開文献からの関連作品のふりかえりと分析を目的として, 人間の3次元動作予測に関する総合的な調査を行った。
論文 参考訳(メタデータ) (2022-03-03T09:46:43Z) - Predicting the Future from First Person (Egocentric) Vision: A Survey [18.07516837332113]
この調査は、自我中心のビジョンから将来の予測の文脈における研究の進化を要約する。
アプリケーション、デバイス、既存の問題、一般的に使用されるデータセット、モデル、入力モダリティの概要を説明している。
我々の分析は、自我中心の視覚から将来の予測方法が、様々なアプリケーションに重大な影響を与えることを強調している。
論文 参考訳(メタデータ) (2021-07-28T14:58:13Z) - Long-Term Anticipation of Activities with Cycle Consistency [90.79357258104417]
本稿では,観察されたフレームの特徴から直接将来の活動を予測し,エンドツーエンドで学習するフレームワークを提案する。
我々のフレームワークは、Breakfastデータセットと50Saladsという2つのデータセットで最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-09-02T15:41:32Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。