論文の概要: Fast Adaptively Weighted Matrix Factorization for Recommendation with
Implicit Feedback
- arxiv url: http://arxiv.org/abs/2003.01892v1
- Date: Wed, 4 Mar 2020 04:50:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 12:52:20.092772
- Title: Fast Adaptively Weighted Matrix Factorization for Recommendation with
Implicit Feedback
- Title(参考訳): 暗黙的フィードバックによるレコメンデーションのための高速適応重み付き行列分解
- Authors: Jiawei Chen, Can Wang, Sheng Zhou, Qihao Shi, Jingbang Chen, Yan Feng,
Chun Chen
- Abstract要約: 信頼度重み付けの割り当て方法と、大量の観測されていないデータを扱う方法は、暗黙のレコメンデーションモデルにおいて2つの重要な問題である。
可変オートエンコーダに基づく高速適応重み付き行列分解法(FAWMF)を提案する。
実世界のデータセットに対する実験は、提案したFAWMFと学習アルゴリズムfBGDの優位性を実証している。
- 参考スコア(独自算出の注目度): 28.30678887024847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recommendation from implicit feedback is a highly challenging task due to the
lack of the reliable observed negative data. A popular and effective approach
for implicit recommendation is to treat unobserved data as negative but
downweight their confidence. Naturally, how to assign confidence weights and
how to handle the large number of the unobserved data are two key problems for
implicit recommendation models. However, existing methods either pursuit fast
learning by manually assigning simple confidence weights, which lacks
flexibility and may create empirical bias in evaluating user's preference; or
adaptively infer personalized confidence weights but suffer from low
efficiency. To achieve both adaptive weights assignment and efficient model
learning, we propose a fast adaptively weighted matrix factorization (FAWMF)
based on variational auto-encoder. The personalized data confidence weights are
adaptively assigned with a parameterized neural network (function) and the
network can be inferred from the data. Further, to support fast and stable
learning of FAWMF, a new specific batch-based learning algorithm fBGD has been
developed, which trains on all feedback data but its complexity is linear to
the number of observed data. Extensive experiments on real-world datasets
demonstrate the superiority of the proposed FAWMF and its learning algorithm
fBGD.
- Abstract(参考訳): 暗黙のフィードバックからの勧告は、信頼できる観測された負のデータがないため、非常に難しい作業である。
暗黙の推奨に対して人気があり効果的なアプローチは、観測されていないデータを否定的なものとして扱うことである。
当然、信頼度重みを割り当てる方法と、観測されていない大量のデータを扱う方法の2つは、暗黙のレコメンデーションモデルの重要な問題である。
しかし、従来の手法では、柔軟性に欠け、ユーザの嗜好を評価する上で経験的偏見を生じさせるような単純な信頼度を手動で割り当てることによって、高速学習を追求する。
適応重み付けと効率的なモデル学習の両方を達成するために,可変オートエンコーダに基づく高速適応重み付き行列分解(fawmf)を提案する。
パーソナライズされたデータ信頼度重みはパラメータ化されたニューラルネットワーク(関数)で適応的に割り当てられ、そのデータからネットワークを推論することができる。
さらに,fawmfの高速で安定した学習を支援するために,すべてのフィードバックデータをトレーニングするが,その複雑性は観測データ数に線形であるバッチベース学習アルゴリズムfbgdを開発した。
実世界のデータセットに対する大規模な実験は、提案したFAWMFと学習アルゴリズムfBGDの優位性を実証している。
関連論文リスト
- Graph-based Confidence Calibration for Large Language Models [22.394717844099684]
本稿では,信頼度推定モデルを構築するための新しい手法を提案する。
重み付きグラフを用いて、質問に対する大きな言語モデルの応答の一貫性を表現します。
次に、正しい応答の確率を推定するためにグラフニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2024-11-03T20:36:44Z) - Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
推薦システム(RSRS)は、ユーザの好みとプライバシの両方に対処する。
通信効率を向上させるために,非一様勾配勾配勾配を取り入れた新しい手法を提案する。
RFRecFの強靭性は、多様なベースラインに比べて優れている。
論文 参考訳(メタデータ) (2024-11-03T12:10:20Z) - Towards Robust and Cost-Efficient Knowledge Unlearning for Large Language Models [25.91643745340183]
大規模言語モデル(LLM)は、大量のテキストコーパスの事前学習を通じて、強い推論と記憶能力を示す。
これはプライバシーと著作権侵害のリスクを生じさせ、効率的な機械学習手法の必要性を強調している。
LLMのための堅牢で効率的なアンラーニングのための2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-08-13T04:18:32Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Boosting Differentiable Causal Discovery via Adaptive Sample Reweighting [62.23057729112182]
異なるスコアに基づく因果探索法は観測データから有向非巡回グラフを学習する。
本稿では,Reweighted Score関数ReScoreの適応重みを動的に学習することにより因果発見性能を向上させるためのモデルに依存しないフレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-06T14:49:59Z) - WSLRec: Weakly Supervised Learning for Neural Sequential Recommendation
Models [24.455665093145818]
我々は、WSLRecと呼ばれる新しいモデルに依存しないトレーニング手法を提案し、3段階のフレームワーク(事前学習、トップ$k$マイニング、本質的、微調整)を採用する。
WSLRec は、BR や ItemCF のようなモデルフリーメソッドから、余分な弱い監督のモデルを事前訓練することで、不完全性の問題を解決すると同時に、最上位の$k のマイニングを活用して、微調整のための弱い監督の信頼性の高いユーザ・イテム関連を検査することで、不正確な問題を解消する。
論文 参考訳(メタデータ) (2022-02-28T08:55:12Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - Auto-weighted Robust Federated Learning with Corrupted Data Sources [7.475348174281237]
フェデレーション学習はコミュニケーション効率とプライバシ保護のトレーニングプロセスを提供する。
平均損失関数をナイーブに最小化する標準的なフェデレーション学習技術は、データの破損に弱い。
破損したデータソースに対して堅牢性を提供するために、自動重み付けロバストフェデレーテッドラーニング(arfl)を提案します。
論文 参考訳(メタデータ) (2021-01-14T21:54:55Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
フェデレーションラーニングにより、クライアントはプライベートデータを中央サーバーに送信することなく、グローバルモデルを共同でトレーニングできます。
em-Influenceという新しい概念を定義し、パラメータに対するこの影響を定量化し、このメトリクスを推定する効果的な効率的なモデルを提案しました。
論文 参考訳(メタデータ) (2020-12-20T14:34:36Z) - Grasping Detection Network with Uncertainty Estimation for
Confidence-Driven Semi-Supervised Domain Adaptation [17.16216430459064]
本稿では,信頼駆動型半教師付き学習を用いた新たな把握検出ネットワークを通じて,ドメイン適応が容易なアプローチを提案する。
提案した把握検出ネットワークは,特徴ピラミッドネットワーク(FPN)を利用した予測不確実性推定機構を特に提供し,平均教師半教師学習は,そのような不確実性情報を利用して,信頼度の高い非競合データに対してのみ整合性損失を強調する。
提案したネットワークは,コーネル把握データセット上で高い成功率を達成できることを示すとともに,極めて限られたデータでドメイン適応を行う場合,信頼駆動型平均教師は,元の平均教師と直接訓練を10%以上向上させる。
論文 参考訳(メタデータ) (2020-08-20T07:42:45Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。