論文の概要: Graph-based Confidence Calibration for Large Language Models
- arxiv url: http://arxiv.org/abs/2411.02454v1
- Date: Sun, 03 Nov 2024 20:36:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:02:08.641676
- Title: Graph-based Confidence Calibration for Large Language Models
- Title(参考訳): グラフに基づく大規模言語モデルの信頼度校正
- Authors: Yukun Li, Sijia Wang, Lifu Huang, Li-Ping Liu,
- Abstract要約: 本稿では,信頼度推定モデルを構築するための新しい手法を提案する。
重み付きグラフを用いて、質問に対する大きな言語モデルの応答の一貫性を表現します。
次に、正しい応答の確率を推定するためにグラフニューラルネットワークを訓練する。
- 参考スコア(独自算出の注目度): 22.394717844099684
- License:
- Abstract: One important approach to improving the reliability of large language models (LLMs) is to provide accurate confidence estimations regarding the correctness of their answers. However, developing a well-calibrated confidence estimation model is challenging, as mistakes made by LLMs can be difficult to detect. We propose a novel method combining the LLM's self-consistency with labeled data and training an auxiliary model to estimate the correctness of its responses to questions. This auxiliary model predicts the correctness of responses based solely on their consistent information. To set up the learning problem, we use a weighted graph to represent the consistency among the LLM's multiple responses to a question. Correctness labels are assigned to these responses based on their similarity to the correct answer. We then train a graph neural network to estimate the probability of correct responses. Experiments demonstrate that the proposed approach substantially outperforms several of the most recent methods in confidence calibration across multiple widely adopted benchmark datasets. Furthermore, the proposed approach significantly improves the generalization capability of confidence calibration on out-of-domain (OOD) data.
- Abstract(参考訳): 大規模言語モデル(LLM)の信頼性向上のための重要なアプローチの1つは、その答えの正確性に関する正確な信頼度推定を提供することである。
しかし,LLMが犯した誤りは検出し難いため,精度の高い信頼度推定モデルの開発は困難である。
本稿では,LLMの自己整合性とラベル付きデータを組み合わせて,質問に対する回答の正しさを推定する補助モデルを訓練する手法を提案する。
この補助モデルは、その一貫した情報のみに基づいて応答の正しさを予測する。
学習課題の設定には重み付きグラフを用いて質問に対するLLMの複数の応答の一貫性を表現する。
正解ラベルは、正解と類似性に基づいてこれらの応答に割り当てられる。
次に、正しい応答の確率を推定するためにグラフニューラルネットワークを訓練する。
実験により、提案手法は、複数の広く採用されているベンチマークデータセットにおいて、信頼度校正の最も最近の手法を著しく上回っていることが示された。
さらに,提案手法は,領域外(OOD)データに対する信頼度校正の一般化能力を大幅に向上させる。
関連論文リスト
- Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
大規模言語モデル(LLM)は、様々なベンチマークで人間レベルの精度に到達し、さらに超えることができるが、不正確な応答における過度な自信は、依然として十分に文書化された障害モードである。
本稿では,LLMの不確実性を測定するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T16:35:30Z) - Multicalibration for Confidence Scoring in LLMs [6.948522445499497]
本稿では,大規模言語モデル(LLM)が生成する出力に対して,解釈可能かつ信頼性の高い信頼スコアを得るために,"マルチバリデーション(multicalibration)"を用いることを提案する。
埋め込み空間内のクラスタリングと「自己アノテーション」という2つの手法を用いて、正しさの確率と相関するプロンプト/コンプリートペアのグルーピングを形成する方法を示す。
我々は,従来の手法と比較して,キャリブレーションと精度の両方の細かな測定精度を大幅に向上させる信頼性スコアを得る方法を示す。
論文 参考訳(メタデータ) (2024-04-06T17:33:37Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT は、信頼目標を設定し、テキスト入力と出力のみに基づいて LLM の信頼度を予測する追加モデルを訓練する手法である。
概念的には単純で、出力以上のターゲットモデルへのアクセスを必要とせず、言語生成に干渉せず、多くの潜在的な使用法を持っている。
閉書質問応答における白箱と黒箱のLCMの校正誤差を考慮し,誤ったLCMの解答を検出する方法として,本手法の競合性を示す。
論文 参考訳(メタデータ) (2024-03-09T17:46:24Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
本稿では,複数サンプルモデル生成系の分布から信頼度を導出する可能性について,一貫性の3つの尺度を用いて検討する。
その結果、一貫性に基づくキャリブレーション手法は、既存のポストホック手法よりも優れていることがわかった。
種々のLMの特性に合わせて,キャリブレーションに適した整合性指標を選択するための実用的なガイダンスを提供する。
論文 参考訳(メタデータ) (2024-02-21T16:15:20Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
ディープラーニングにおけるミススキャリブレーションとは、予測された信頼とパフォーマンスの間には相違がある、という意味である。
トレーニング中に何を学ぶべきかを学ぶことを目的とした動的正規化(DReg)を導入し、信頼度調整のトレードオフを回避する。
論文 参考訳(メタデータ) (2024-02-13T11:25:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
大きな言語モデル(LLM)の信頼性スコアは、その応答が正しいという実際の可能性と一致すべきである。
現在の信頼性評価手法とキャリブレーション基準は、応答の正しさを2値の真/偽評価に頼っている。
本稿では,LLMの応答の正しさと関連する信頼度の両方を,様々なスコアの分布として扱う統一校正フレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-09T17:00:32Z) - Binary Classification with Confidence Difference [100.08818204756093]
本稿では,信頼性差分法 (ConfDiff) という,弱教師付き二項分類問題について考察する。
本稿では,この問題に対処するためのリスク一貫性のあるアプローチを提案し,推定誤差が最適収束率と一致することを示す。
また,整合性や収束率も証明されたオーバーフィッティング問題を緩和するためのリスク補正手法も導入する。
論文 参考訳(メタデータ) (2023-10-09T11:44:50Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
大規模言語モデルはしばしば「ハロシン化」の課題に直面している
本研究では,不確実性に応答してモデルが出力を拡張あるいは拒否することを可能にする,不確実性を考慮したコンテキスト内学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T12:06:53Z) - Fast Adaptively Weighted Matrix Factorization for Recommendation with
Implicit Feedback [28.30678887024847]
信頼度重み付けの割り当て方法と、大量の観測されていないデータを扱う方法は、暗黙のレコメンデーションモデルにおいて2つの重要な問題である。
可変オートエンコーダに基づく高速適応重み付き行列分解法(FAWMF)を提案する。
実世界のデータセットに対する実験は、提案したFAWMFと学習アルゴリズムfBGDの優位性を実証している。
論文 参考訳(メタデータ) (2020-03-04T04:50:44Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
数ショットのメトリックベースのアプローチのための一般的なトランスダクティブ推論手法は、最も確実なクエリ例の平均で、各クラスのプロトタイプを更新することである。
本稿では,各クエリの信頼度をメタラーニングして,ラベルのないクエリに最適な重みを割り当てる手法を提案する。
4つのベンチマークデータセットに対してメタ学習の信頼度で、少数ショットの学習モデルを検証した。
論文 参考訳(メタデータ) (2020-02-27T10:22:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。