論文の概要: Learning in the Sky: An Efficient 3D Placement of UAVs
- arxiv url: http://arxiv.org/abs/2003.02650v1
- Date: Mon, 2 Mar 2020 15:16:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-27 04:47:07.295336
- Title: Learning in the Sky: An Efficient 3D Placement of UAVs
- Title(参考訳): 空を学習する:uavの効率的な3d配置
- Authors: Atefeh Hajijamali Arani, M. Mahdi Azari, William Melek, and Safieddin
Safavi-Naeini
- Abstract要約: 本稿では,地上のセルネットワークをダウンリンクで支援するUAVの3次元展開のための学習機構を提案する。
この問題は、満足度のあるUAV間での非協調ゲームとしてモデル化されている。
この問題を解決するために,不満足なUAVが学習アルゴリズムに基づいて位置情報を更新する,低複雑性アルゴリズムを用いる。
- 参考スコア(独自算出の注目度): 0.8399688944263842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deployment of unmanned aerial vehicles (UAVs) as aerial base stations can
deliver a fast and flexible solution for serving varying traffic demand. In
order to adequately benefit of UAVs deployment, their efficient placement is of
utmost importance, and requires to intelligently adapt to the environment
changes. In this paper, we propose a learning-based mechanism for the
three-dimensional deployment of UAVs assisting terrestrial cellular networks in
the downlink. The problem is modeled as a non-cooperative game among UAVs in
satisfaction form. To solve the game, we utilize a low complexity algorithm, in
which unsatisfied UAVs update their locations based on a learning algorithm.
Simulation results reveal that the proposed UAV placement algorithm yields
significant performance gains up to about 52% and 74% in terms of throughput
and the number of dropped users, respectively, compared to an optimized
baseline algorithm.
- Abstract(参考訳): 航空基地局としての無人航空機(UAV)の配備は、様々な交通需要に対応する高速で柔軟なソリューションを提供することができる。
UAVの展開を適切に活用するためには、その効率的な配置が最重要であり、環境の変化にインテリジェントに適応する必要がある。
本稿では,地上のセルネットワークをダウンリンクで支援するUAVの3次元展開のための学習機構を提案する。
この問題は、満足度のあるUAV間の非協調ゲームとしてモデル化されている。
この問題を解決するために,不満足なUAVが学習アルゴリズムに基づいて位置情報を更新する,低複雑性アルゴリズムを用いる。
シミュレーションの結果,提案したUAV配置アルゴリズムは,最適化ベースラインアルゴリズムと比較して,スループットおよびドロップユーザ数において,それぞれ52%,74%の大幅な性能向上を達成していることがわかった。
関連論文リスト
- Task Delay and Energy Consumption Minimization for Low-altitude MEC via Evolutionary Multi-objective Deep Reinforcement Learning [52.64813150003228]
無人航空機や他の航空機による低高度経済(LAE)は、輸送、農業、環境監視といった分野に革命をもたらした。
今後の6世代(6G)時代において、UAV支援移動エッジコンピューティング(MEC)は特に山岳や災害に遭った地域のような困難な環境において重要である。
タスクオフロード問題は、主にタスク遅延の最小化とUAVのエネルギー消費のトレードオフに対処するUAV支援MECの重要な問題の一つである。
論文 参考訳(メタデータ) (2025-01-11T02:32:42Z) - Wireless Federated Learning over UAV-enabled Integrated Sensing and Communication [2.8203310972866382]
本稿では,無人航空機(UAV)を利用した統合型統合学習(FL)における新しい遅延最適化問題について検討する。
ベンチマーク方式と比較して,システム遅延を最大68.54%削減し,高品質な近似解を求めるため,単純かつ効率的な反復アルゴリズムを開発した。
論文 参考訳(メタデータ) (2024-11-01T14:25:24Z) - Research on an Autonomous UAV Search and Rescue System Based on the Improved [1.3399503792039942]
本稿では,EGO-Plannerアルゴリズムに基づく自律検索・救助UAVシステムを提案する。
逆モータバックステッピングの手法を用いて、UAVの全体的な飛行効率を高め、マシン全体の小型化を図る。
同時に、双方向A*アルゴリズムとオブジェクト検出アルゴリズムによって最適化されたEGO-Planner計画ツールも導入した。
論文 参考訳(メタデータ) (2024-06-01T17:25:29Z) - UAV-enabled Collaborative Beamforming via Multi-Agent Deep Reinforcement Learning [79.16150966434299]
本稿では,UAVを用いた協調ビームフォーミング多目的最適化問題 (UCBMOP) を定式化し,UAVの伝送速度を最大化し,全UAVのエネルギー消費を最小化する。
ヘテロジニアス・エージェント・信頼領域ポリシー最適化(HATRPO)を基本フレームワークとし,改良されたHATRPOアルゴリズム,すなわちHATRPO-UCBを提案する。
論文 参考訳(メタデータ) (2024-04-11T03:19:22Z) - Multi-Agent Reinforcement Learning for Offloading Cellular Communications with Cooperating UAVs [21.195346908715972]
無人航空機は、地上のBSからデータトラフィックをオフロードする代替手段を提供する。
本稿では,地上BSからデータオフロードを行うために,複数のUAVを効率的に利用するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T12:36:08Z) - Meta Reinforcement Learning for Strategic IoT Deployments Coverage in
Disaster-Response UAV Swarms [5.57865728456594]
無人航空機(UAV)は、重要な緊急用途に使用される可能性があるとして、学術や産業の研究者の注目を集めている。
これらのアプリケーションには、地上のユーザーに無線サービスを提供し、災害の影響を受けた地域からデータを収集する機能が含まれる。
UAVの限られた資源、エネルギー予算、厳格なミッション完了時間は、これらの用途にUAVを採用する際の課題を提起している。
論文 参考訳(メタデータ) (2024-01-20T05:05:39Z) - Integrated Sensing, Computation, and Communication for UAV-assisted
Federated Edge Learning [52.7230652428711]
フェデレーションエッジ学習(FEEL)は、エッジデバイスとサーバ間の定期的な通信を通じて、プライバシ保護モデルトレーニングを可能にする。
無人航空機(UAV)搭載エッジデバイスは、効率的なデータ収集における柔軟性と移動性のため、FEELにとって特に有利である。
論文 参考訳(メタデータ) (2023-06-05T16:01:33Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
本稿では,無人航空機(UAV)による3D環境におけるIoT(Internet-of-Things)システムについて検討する。
本稿では,TD3-TDCTMアルゴリズムの完成時間最小化のためのトラジェクトリ設計を提案する。
シミュレーションの結果,従来の3つの非学習ベースライン法よりもTD3-TDCTMアルゴリズムの方が優れていることが示された。
論文 参考訳(メタデータ) (2021-07-23T03:33:29Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。