論文の概要: Multi-object Tracking via End-to-end Tracklet Searching and Ranking
- arxiv url: http://arxiv.org/abs/2003.02795v1
- Date: Wed, 4 Mar 2020 18:46:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 13:16:34.821820
- Title: Multi-object Tracking via End-to-end Tracklet Searching and Ranking
- Title(参考訳): 終端トラックレット探索とランキングによる多目的追跡
- Authors: Tao Hu, Lichao Huang, Han Shen
- Abstract要約: 本稿では,オンライン・エンドツーエンドのトラックレット探索学習プロセスを導入することで,トラックレットの一貫性を最適化する新しい手法を提案する。
トラックレットの出現エンコーダとしてのシーケンスモデルにより、トラッカーは従来のトラックレットアソシエーションベースラインから顕著な性能向上を達成する。
提案手法は,公開検出とオンライン設定を用いたMOT1517チャレンジベンチマークの最先端性も達成している。
- 参考スコア(独自算出の注目度): 11.46601533985954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent works in multiple object tracking use sequence model to calculate the
similarity score between the detections and the previous tracklets. However,
the forced exposure to ground-truth in the training stage leads to the
training-inference discrepancy problem, i.e., exposure bias, where association
error could accumulate in the inference and make the trajectories drift. In
this paper, we propose a novel method for optimizing tracklet consistency,
which directly takes the prediction errors into account by introducing an
online, end-to-end tracklet search training process. Notably, our methods
directly optimize the whole tracklet score instead of pairwise affinity. With
sequence model as appearance encoders of tracklet, our tracker achieves
remarkable performance gain from conventional tracklet association baseline.
Our methods have also achieved state-of-the-art in MOT15~17 challenge
benchmarks using public detection and online settings.
- Abstract(参考訳): 近年、複数のオブジェクト追跡利用シーケンスモデルを用いて、検出と前のトラックレットの類似点を計算する。
しかし, トレーニング段階において, 地絡への強制曝露は, トレーニング・推論の相違, すなわち, 被曝バイアスに相関誤差が蓄積し, 軌道をドリフトさせる原因となる。
本稿では,オンライン・エンド・ツー・エンドのトラックレット探索学習プロセスを導入することで,予測誤差を直接考慮したトラックレット一貫性の最適化手法を提案する。
特に,提案手法では,対関係ではなく,トラックレットスコア全体を直接最適化する。
トラックレットの出現エンコーダとしてのシーケンスモデルにより,トラッカは従来のトラックレットアソシエーションベースラインから著しい性能向上を達成している。
提案手法は,mot15~17チャレンジベンチマークにおいて,公開検出とオンライン設定を用いて最先端の成果を上げている。
関連論文リスト
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
従来の検出によるトラッキングと、クエリによる新たなトラッキングだ。
本稿では,学習可能なアソシエータによって達成されるトラッキング・バイ・検出・クエリーのパラダイムを提案する。
トラッキング・バイ・クエリーモデルと比較すると、LAIDは特に訓練効率の高い競合追跡精度を達成している。
論文 参考訳(メタデータ) (2024-11-09T14:38:08Z) - Unsupervised Learning of Accurate Siamese Tracking [68.58171095173056]
分類枝と回帰枝の両方で時間対応を学習できる新しい教師なし追跡フレームワークを提案する。
トラッカーは、トラッカーネットやLaSOTのような大規模データセット上で、教師なしの手法と同等の性能を発揮する。
論文 参考訳(メタデータ) (2022-04-04T13:39:43Z) - Active Learning for Deep Visual Tracking [51.5063680734122]
畳み込みニューラルネットワーク(CNN)は近年,単一目標追跡タスクに成功している。
本稿では,ディープ・ビジュアル・トラッキングのためのアクティブ・ラーニング手法を提案する。
アクティブラーニングの指導のもと、トレーニングされた深層CNNモデルに基づくトラッカーは、ラベリングコストを低減しつつ、競合的なトラッキング性能を達成することができる。
論文 参考訳(メタデータ) (2021-10-17T11:47:56Z) - On the detection-to-track association for online multi-object tracking [30.883165972525347]
トラックの歴史的外観距離をインクリメンタルなガウス混合モデル(IGMM)でモデル化するハイブリッドトラックアソシエーションアルゴリズムを提案する。
3つのMOTベンチマークによる実験結果から,HTAが目標識別性能を向上し,追跡速度に多少の妥協を施すことが確認された。
論文 参考訳(メタデータ) (2021-07-01T14:44:12Z) - Probabilistic Tracklet Scoring and Inpainting for Multiple Object
Tracking [83.75789829291475]
本稿では,トラックレット提案の確率的自己回帰運動モデルを提案する。
これは、我々のモデルを訓練して、自然のトラックレットの基盤となる分布を学習することで達成される。
我々の実験は、挑戦的なシーケンスにおける物体の追跡におけるアプローチの優位性を実証している。
論文 参考訳(メタデータ) (2020-12-03T23:59:27Z) - Tracklets Predicting Based Adaptive Graph Tracking [51.352829280902114]
マルチオブジェクト追跡,すなわち textbfTPAGT のための,正確かつエンドツーエンドの学習フレームワークを提案する。
動作予測に基づいて、現在のフレーム内のトラックレットの特徴を再抽出する。
論文 参考訳(メタデータ) (2020-10-18T16:16:49Z) - ArTIST: Autoregressive Trajectory Inpainting and Scoring for Tracking [80.02322563402758]
オンラインマルチオブジェクトトラッキング(MOT)フレームワークの中核的なコンポーネントの1つは、既存のトラックレットと新しい検出を関連付けることである。
そこで我々は,トラックレットが自然運動を表す可能性を直接測定することにより,トラックレットの提案を評価する確率論的自己回帰生成モデルを提案する。
論文 参考訳(メタデータ) (2020-04-16T06:43:11Z) - RetinaTrack: Online Single Stage Joint Detection and Tracking [22.351109024452462]
両タスクがミッションクリティカルな自律運転におけるトラッキング・バイ・検出パラダイムに注目した。
本稿では、一般的な単一ステージのRetinaNetアプローチを改良したRetinaTrackと呼ばれる、概念的にシンプルで効率的な検出と追跡のジョイントモデルを提案する。
論文 参考訳(メタデータ) (2020-03-30T23:46:29Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
本稿では,マルチオブジェクトトラッキング(MOT)問題のトラッキング・バイ・検出パラダイムに見られるデータアソシエーションフェーズに対する制約プログラミング(CP)アプローチを提案する。
提案手法は車両追跡データを用いてテストし,UA-DETRACベンチマークの上位手法よりも優れた結果を得た。
論文 参考訳(メタデータ) (2020-03-10T00:04:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。