論文の概要: Robustness Guarantees for Mode Estimation with an Application to Bandits
- arxiv url: http://arxiv.org/abs/2003.02932v1
- Date: Thu, 5 Mar 2020 21:29:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 06:42:53.519920
- Title: Robustness Guarantees for Mode Estimation with an Application to Bandits
- Title(参考訳): モード推定のためのロバスト性保証とバンドイットへの応用
- Authors: Aldo Pacchiano, Heinrich Jiang, Michael I. Jordan
- Abstract要約: 平均ではなく報酬分布のモードを値とするマルチアームバンディットの理論を導入する。
我々は,我々のアルゴリズムが逆雑音列による腕の摂動に頑健であることを示すシミュレーションで示す。
- 参考スコア(独自算出の注目度): 131.21717367564963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mode estimation is a classical problem in statistics with a wide range of
applications in machine learning. Despite this, there is little understanding
in its robustness properties under possibly adversarial data contamination. In
this paper, we give precise robustness guarantees as well as privacy guarantees
under simple randomization. We then introduce a theory for multi-armed bandits
where the values are the modes of the reward distributions instead of the mean.
We prove regret guarantees for the problems of top arm identification, top
m-arms identification, contextual modal bandits, and infinite continuous arms
top arm recovery. We show in simulations that our algorithms are robust to
perturbation of the arms by adversarial noise sequences, thus rendering modal
bandits an attractive choice in situations where the rewards may have outliers
or adversarial corruptions.
- Abstract(参考訳): モード推定は、機械学習に幅広い応用がある統計学における古典的な問題である。
それにもかかわらず、その堅牢性については、おそらく敵対的なデータ汚染の下ではほとんど理解されていない。
本稿では、単純なランダム化の下で、厳密な堅牢性保証とプライバシー保証を提供する。
次に,平均ではなく報酬分布のモードを値とするマルチアームバンディットの理論を導入する。
我々は,トップアーム識別,トップmアーム識別,コンテキストモーダルバンディット,無限連続アームトップアームリカバリの問題に対する後悔の保証を証明した。
シミュレーションでは、我々のアルゴリズムが逆雑音列による腕の摂動に頑健であることを示し、その結果、報奨が異常値や逆値の腐敗を持つ可能性がある状況において、モーダルバンディットが魅力的な選択となる。
関連論文リスト
- Bridging Rested and Restless Bandits with Graph-Triggering: Rising and Rotting [67.1631453378926]
Graph-Triggered Banditsは、安静と安静のバンディットを一般化するフレームワークである。
本研究は,2種類の単調包帯に焦点をあてる: 立ち上がり, 腕の期待される報酬が増加する, 引き金の数が増える, 回転する, 反対の行動が起こる。
論文 参考訳(メタデータ) (2024-09-09T18:23:07Z) - Neural Dueling Bandits [58.90189511247936]
ニューラルネットワークを用いて、予め選択した腕の好みフィードバックを用いて報酬関数を推定する。
次に、理論結果を二項フィードバックによる文脈的帯域幅問題に拡張し、それはそれ自体は自明な寄与ではない。
論文 参考訳(メタデータ) (2024-07-24T09:23:22Z) - Pure Exploration for Constrained Best Mixed Arm Identification with a Fixed Budget [6.22018632187078]
固定予算の制約付きベスト・ミックスアーム識別(CBMAI)問題を導入する。
目標は、与えられた学習予算$N$で、期待されるコストの制約によって期待される報酬を最大化する最高の混合アームを見つけることである。
我々は、(最良の混合アームの支持の)誤識別に関する理論上の上限を提供し、予算$N$で指数関数的に崩壊することを示す。
論文 参考訳(メタデータ) (2024-05-23T22:35:11Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - From Optimality to Robustness: Dirichlet Sampling Strategies in
Stochastic Bandits [0.0]
本研究では、腕の観察を再サンプリングした経験的指標のペア比較に基づいて、ジェネリックディリクレサンプリング(DS)アルゴリズムについて検討する。
この戦略の異なる変種は、分布が有界であるときに証明可能な最適後悔保証と、半有界分布に対して軽度量子状態の対数後悔を実現することを示す。
論文 参考訳(メタデータ) (2021-11-18T14:34:21Z) - Combinatorial Blocking Bandits with Stochastic Delays [33.65025386998747]
最近の研究は、各腕の報酬が最後の引き抜きから経過した時間の特別な機能であるマルチアームバンディット問題の自然変化を考察している。
本研究では, 上記のモデルを2つの方向に拡張する。 (i) 各ラウンドで複数の腕を演奏できる汎用的な設定を, 実現可能性制約の下で検討する。
我々は、利用可能な(非ブロック化された)アームの中で、常に最大で期待される報酬を再生する自然な欲求部分集合の近似を厳密に分析する。
腕の期待報酬が不明な場合、上記のアルゴリズムを盗賊に適応させる。
論文 参考訳(メタデータ) (2021-05-22T02:46:04Z) - Online Model Selection: a Rested Bandit Formulation [49.69377391589057]
静止したバンディット設定における最善のアーム識別問題を紹介し,解析する。
我々は、この問題の後悔の新しい概念を定義し、ゲームの終わりに最小の期待損失を持つ腕を常に再生するポリシーと比較します。
最近のバンディット文献における既知のモデル選択の試みとは異なり、アルゴリズムは問題の特定の構造を利用して、予想される損失関数の未知のパラメータを学習する。
論文 参考訳(メタデータ) (2020-12-07T08:23:08Z) - Online and Distribution-Free Robustness: Regression and Contextual
Bandits with Huber Contamination [29.85468294601847]
線形回帰と文脈的帯域幅という2つの古典的高次元オンライン学習問題を再考する。
従来の手法が失敗した場合にアルゴリズムが成功することを示す。
論文 参考訳(メタデータ) (2020-10-08T17:59:05Z) - Optimal Best-arm Identification in Linear Bandits [79.3239137440876]
サンプルの複雑さが既知のインスタンス固有の下界と一致する単純なアルゴリズムを考案する。
既存のベストアーム識別戦略とは異なり、我々のアルゴリズムは武器の数に依存しない停止規則を用いる。
論文 参考訳(メタデータ) (2020-06-29T14:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。