論文の概要: Unifying Graph Embedding Features with Graph Convolutional Networks for
Skeleton-based Action Recognition
- arxiv url: http://arxiv.org/abs/2003.03007v2
- Date: Tue, 11 Oct 2022 12:32:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 01:12:06.381610
- Title: Unifying Graph Embedding Features with Graph Convolutional Networks for
Skeleton-based Action Recognition
- Title(参考訳): スケルトンに基づく行動認識のためのグラフ畳み込みネットワークによるグラフ埋め込み機能の統合
- Authors: Dong Yang, Monica Mengqi Li, Hong Fu, Jicong Fan, Zhao Zhang, Howard
Leung
- Abstract要約: 本稿では,人行動認識のためのグラフ畳み込みネットワークに15のグラフ埋め込み機能を組み込んだ新しいフレームワークを提案する。
我々のモデルは,NTU-RGB+D,Kineetics,SYSU-3Dという3つの大規模データセットで検証されている。
- 参考スコア(独自算出の注目度): 18.001693718043292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Combining skeleton structure with graph convolutional networks has achieved
remarkable performance in human action recognition. Since current research
focuses on designing basic graph for representing skeleton data, these
embedding features contain basic topological information, which cannot learn
more systematic perspectives from skeleton data. In this paper, we overcome
this limitation by proposing a novel framework, which unifies 15 graph
embedding features into the graph convolutional network for human action
recognition, aiming to best take advantage of graph information to distinguish
key joints, bones, and body parts in human action, instead of being exclusive
to a single feature or domain. Additionally, we fully investigate how to find
the best graph features of skeleton structure for improving human action
recognition. Besides, the topological information of the skeleton sequence is
explored to further enhance the performance in a multi-stream framework.
Moreover, the unified graph features are extracted by the adaptive methods on
the training process, which further yields improvements. Our model is validated
by three large-scale datasets, namely NTU-RGB+D, Kinetics and SYSU-3D, and
outperforms the state-of-the-art methods. Overall, our work unified graph
embedding features to promotes systematic research on human action recognition.
- Abstract(参考訳): 骨格構造とグラフ畳み込みネットワークを組み合わせることで、人間の行動認識において顕著な性能を発揮する。
現在の研究は、骨格データを表す基本グラフの設計に焦点を当てているため、これらの埋め込み特徴は、骨格データからより体系的な視点を学ぶことができない基本的なトポロジカル情報を含んでいる。
本稿では,人行動認識のためのグラフ畳み込みネットワークに15のグラフ埋め込み機能を組み込んだ新しいフレームワークを提案し,その特徴や領域に限らず,人行動におけるキージョイント,骨,身体部分の識別にグラフ情報を最大限に活用することを目的とする。
さらに,人間の行動認識を改善するため,骨格構造の最も優れたグラフ特徴の探索方法について検討した。
さらに, マルチストリームフレームワークの性能向上を図るため, 骨格配列のトポロジ的情報について検討した。
さらに、統一グラフ特徴は、トレーニングプロセス上の適応的手法によって抽出され、さらに改善される。
我々のモデルは、NTU-RGB+D、Kinetics、SYSU-3Dという3つの大規模データセットで検証され、最先端の手法よりも優れている。
全体として、人間の行動認識に関する体系的な研究を促進するために、グラフの埋め込み機能を統合する。
関連論文リスト
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
SSA-GCN(Semantic-structure attention-enhanced graph convolutional Network)を導入する。
グラフ構造をモデル化するだけでなく、分類性能を高めるために一般化されていない特徴を抽出する。
Cora と CiteSeer のデータセットに対する実験により,提案手法による性能改善が実証された。
論文 参考訳(メタデータ) (2024-03-24T06:28:54Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - Pose-Guided Graph Convolutional Networks for Skeleton-Based Action
Recognition [32.07659338674024]
グラフ畳み込みネットワーク(GCN)は、人体骨格を空間的および時間的グラフとしてモデル化することができる。
本研究では,高性能な人行動認識のためのマルチモーダルフレームワークとして,ポーズ誘導型GCN(PG-GCN)を提案する。
このモジュールの中核となる考え方は、トレーニング可能なグラフを使用して、スケルトンストリームから、ポーズストリームの機能を集約することで、より堅牢な機能表現能力を持つネットワークを実現することだ。
論文 参考訳(メタデータ) (2022-10-10T02:08:49Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - Multi-Level Graph Encoding with Structural-Collaborative Relation
Learning for Skeleton-Based Person Re-Identification [11.303008512400893]
Skeletonベースの人物再識別(Re-ID)は、安全クリティカルなアプリケーションに優れた価値を提供する、新たなオープントピックである。
既存の方法は通常、手作りの特徴やモデル骨格のダイナミクスを体関節の軌跡から抽出する。
Re-IDの識別グラフ特徴を符号化するために,構造協調関係学習(MG-SCR)を用いたマルチレベルグラフ符号化手法を提案する。
論文 参考訳(メタデータ) (2021-06-06T09:09:57Z) - SUGAR: Subgraph Neural Network with Reinforcement Pooling and
Self-Supervised Mutual Information Mechanism [33.135006052347194]
本稿では,グラフ分類のための階層型サブグラフレベル選択および埋め込み型グラフニューラルネットワーク,すなわちシュガーを提案する。
SUGARは、原グラフの代表的な部分として印象的なサブグラフを抽出し、サブグラフレベルのパターンを明らかにすることにより、スケッチグラフを再構築する。
グラフ間の部分グラフ表現を区別するために,自己教師付き相互情報機構を提案する。
論文 参考訳(メタデータ) (2021-01-20T15:06:16Z) - Multi Scale Temporal Graph Networks For Skeleton-based Action
Recognition [5.970574258839858]
グラフ畳み込みネットワーク(GCN)は、関連するノードの特徴を効果的に捉え、モデルの性能を向上させる。
まず、時間的特徴と空間的特徴の整合性を無視し、特徴をノード単位とフレーム単位で抽出する。
本稿では,行動認識のための時間グラフネットワーク(TGN)と呼ばれる新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-12-05T08:08:25Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
我々はスケルトンに基づく行動認識のためのシンプルで高度にモジュール化されたグラフ畳み込みネットワークアーキテクチャを設計する。
ネットワークは,空間的および時間的経路から多粒度情報を集約するビルディングブロックを繰り返すことで構築される。
論文 参考訳(メタデータ) (2020-11-26T14:43:04Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。