Quantum Adiabatic Theorem Revisited
- URL: http://arxiv.org/abs/2003.03063v1
- Date: Fri, 6 Mar 2020 07:49:45 GMT
- Title: Quantum Adiabatic Theorem Revisited
- Authors: Runyao Duan
- Abstract summary: We show how to adiabatically prepare an arbitrary qubit state from an initial state.
As applications, we show how to adiabatically prepare an arbitrary qubit state from an initial state.
- Score: 6.259224706032504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 2004 Ambainis and Regev formulated a certain form of quantum adiabatic
theorem and provided an elementary proof which is especially accessible to
computer scientists. Their result is achieved by discretizing the total
adiabatic evolution into a sequence of unitary transformations acting on the
quantum system. Here we continue this line of study by providing another
elementary and shorter proof with improved bounds. Our key finding is a
succinct integral representation of the difference between the target and the
actual states, which yields an accurate estimation of the approximation error.
Our proof can be regarded as a "continuous" version of the work by Ambainis and
Regev. As applications, we show how to adiabatically prepare an arbitrary qubit
state from an initial state.
Related papers
- The Bethe Ansatz as a Quantum Circuit [40.02298833349518]
We study the transformation that brings the Bethe ansatz into a quantum circuit.
We present a simple set of diagrammatic rules that define a novel Matrix Product State network building Bethe wavefunctions.
arXiv Detail & Related papers (2023-09-25T18:00:06Z) - Limit theorems for Quantum Trajectories [0.0]
We prove Law of Large Numbers (LLN), Functional Central Limit Theorem, Law of Iterated Logarithm and Moderate Deviation Principle.
Proof of the LLN is based on Birkhoff's ergodic theorem and an analysis of harmonic functions.
The other theorems are proved using martingale approximation of empirical sums.
arXiv Detail & Related papers (2023-02-13T08:57:57Z) - Controlled Quantized Adiabatic Transport in a superlattice Wannier-Stark
ladder [0.0]
We show that an adiabatic control of eigenstates can be used to induce perfectly quantized single-particle transport across a pre-determined number of lattice sites.
We dedicate this paper to the memory of our late friend and colleague Bruce Shore, who was an expert in adiabatic processes and taught us much about this field.
arXiv Detail & Related papers (2022-08-23T13:22:32Z) - Convergence conditions for the quantum relative entropy and other
applications of the deneralized quantum Dini lemma [0.0]
We prove two general dominated convergence theorems and the theorem about preserving local continuity under convex mixtures.
A simple convergence criterion for the von Neumann entropy is also obtained.
arXiv Detail & Related papers (2022-05-18T17:55:36Z) - Maximum entropy quantum state distributions [58.720142291102135]
We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
arXiv Detail & Related papers (2022-03-23T17:42:34Z) - Stochastic approximate state conversion for entanglement and general quantum resource theories [41.94295877935867]
An important problem in any quantum resource theory is to determine how quantum states can be converted into each other.
Very few results have been presented on the intermediate regime between probabilistic and approximate transformations.
We show that these bounds imply an upper bound on the rates for various classes of states under probabilistic transformations.
We also show that the deterministic version of the single copy bounds can be applied for drawing limitations on the manipulation of quantum channels.
arXiv Detail & Related papers (2021-11-24T17:29:43Z) - Adiabatic Dynamics and Shortcuts to Adiabaticity: Fundamentals and
Applications [0.0]
This thesis is presented a set of results in adiabatic dynamics (closed and open system) and transitionless quantum driving.
A number of theoretical applications are studied, where some theoretical prediction presented in this thesis are experimentally verified.
arXiv Detail & Related papers (2021-07-25T13:16:17Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - The variance of relative surprisal as single-shot quantifier [0.0]
We show that (relative) surprisal gives sufficient conditions for approximate state-transitions between pairs of quantum states in single-shot setting.
We further derive a simple and physically appealing axiomatic single-shot characterization of (relative) entropy.
arXiv Detail & Related papers (2020-09-17T16:06:54Z) - A refinement of Reznick's Positivstellensatz with applications to
quantum information theory [72.8349503901712]
In Hilbert's 17th problem Artin showed that any positive definite in several variables can be written as the quotient of two sums of squares.
Reznick showed that the denominator in Artin's result can always be chosen as an $N$-th power of the squared norm of the variables.
arXiv Detail & Related papers (2019-09-04T11:46:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.