Maximum entropy quantum state distributions
- URL: http://arxiv.org/abs/2203.12580v2
- Date: Thu, 24 Mar 2022 00:48:31 GMT
- Title: Maximum entropy quantum state distributions
- Authors: Alexander Altland, David A. Huse, and Tobias Micklitz
- Abstract summary: We go beyond traditional thermodynamics and condition on the full distribution of the conserved quantities.
The result are quantum state distributions whose deviations from thermal states' get more pronounced in the limit of wide input distributions.
- Score: 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an approach to the realization of many-body quantum state
distributions inspired by combined principles of thermodynamics and mesoscopic
physics. Its essence is a maximum entropy principle conditioned by conservation
laws. We go beyond traditional thermodynamics and condition on the full
distribution of the conserved quantities. The result are quantum state
distributions whose deviations from `thermal states' get more pronounced in the
limit of wide input distributions. We describe their properties in terms of
entanglement measures and discuss strategies for state engineering by methods
of current date experimentation.
Related papers
- Universal Upper Bound on Ergotropy and No-Go Theorem by the Eigenstate Thermalization Hypothesis [9.361474110798143]
We show that the maximum extractable work (ergotropy) from a quantum many-body system is constrained by local athermality of an initial state and local entropy decrease brought about by quantum operations.
Our result bridges two independently studied concepts of quantum thermodynamics, the second law and thermalization, via intrasystem correlations in many-body systems as a resource for work extraction.
arXiv Detail & Related papers (2024-06-17T00:20:33Z) - A Maximum Entropy Principle in Deep Thermalization and in Hilbert-Space Ergodicity [3.404409295403274]
We report universal statistical properties displayed by ensembles of pure states that naturally emerge in quantum many-body systems.
Our results generalize the notions of Hilbert-space ergodicity to time-independent Hamiltonian dynamics and deep thermalization.
arXiv Detail & Related papers (2024-03-18T17:09:04Z) - Quantum state inference from coarse-grained descriptions: analysis and
an application to quantum thermodynamics [101.18253437732933]
We compare the Maximum Entropy Principle method, with the recently proposed Average Assignment Map method.
Despite the fact that the assigned descriptions respect the measured constraints, the descriptions differ in scenarios that go beyond the traditional system-environment structure.
arXiv Detail & Related papers (2022-05-16T19:42:24Z) - Gauge Quantum Thermodynamics of Time-local non-Markovian Evolutions [77.34726150561087]
We deal with a generic time-local non-Markovian master equation.
We define current and power to be process-dependent as in classical thermodynamics.
Applying the theory to quantum thermal engines, we show that gauge transformations can change the machine efficiency.
arXiv Detail & Related papers (2022-04-06T17:59:15Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Strong Coupling Quantum Thermodynamics with Renormalized Hamiltonian and
Temperature [2.542198147027801]
We develop strong coupling quantum thermodynamics based on the solution of the exact master equation.
We find that both the Hamiltonian and the temperature must be renormalized due to the system-reservoir couplings.
With the renormalized Hamiltonian and temperature, the exact steady state of open quantum systems can be expressed as a standard Gibbs state.
arXiv Detail & Related papers (2020-10-05T07:34:26Z) - Thermodynamic Reverse Bounds for General Open Quantum Processes [1.7205106391379026]
Various quantum thermodynamic bounds are shown to stem from a single tighter and more general inequality, consequence of the operator concavity of the logarithmic function.
We apply our bound to evaluate the thermodynamic length for open processes, the heat exchange in erasure processes, and the maximal energy outflow in general quantum evolutions.
arXiv Detail & Related papers (2020-03-19T03:10:20Z) - First and Second Law of Quantum Thermodynamics: A Consistent Derivation
Based on a Microscopic Definition of Entropy [0.0]
This tutorial focuses on the derivation of the first and second law for closed and open quantum systems far from equilibrium.
The derivation is based on a microscopic definition of five essential quantities: internal energy, thermodynamic entropy, work, heat and temperature.
arXiv Detail & Related papers (2020-02-20T15:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.