Cavity quantum optomechanical nonlinearities and position measurement
beyond the breakdown of the linearized approximation
- URL: http://arxiv.org/abs/2207.11153v3
- Date: Thu, 3 Aug 2023 15:48:18 GMT
- Title: Cavity quantum optomechanical nonlinearities and position measurement
beyond the breakdown of the linearized approximation
- Authors: Jack Clarke, Pascal Neveu, Kiran E. Khosla, Ewold Verhagen, Michael R.
Vanner
- Abstract summary: We develop a theoretical formalism of cavity quantum optomechanics that captures the nonlinearities of both the radiation-pressure interaction and the cavity response.
We propose how position measurement can be performed beyond the breakdown of the linearized approximation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Several optomechanics experiments are now entering the highly sought
nonlinear regime where optomechanical interactions are large even for low light
levels. Within this regime, new quantum phenomena and improved performance may
be achieved, however, a corresponding theoretical formalism of cavity quantum
optomechanics that captures the nonlinearities of both the radiation-pressure
interaction and the cavity response is needed to unlock these capabilities.
Here, we develop such a nonlinear cavity quantum optomechanical framework,
which we then utilize to propose how position measurement can be performed
beyond the breakdown of the linearized approximation. Our proposal utilizes
optical general-dyne detection, ranging from single to dual homodyne, to obtain
mechanical position information imprinted onto both the optical amplitude and
phase quadratures and enables both pulsed and continuous modes of operation.
These cavity optomechanical nonlinearities are now being confronted in a
growing number of experiments, and our framework will allow a range of advances
to be made in e.g. quantum metrology, explorations of the standard quantum
limit, and quantum measurement and control.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Squeezing for Broadband Multidimensional Variational Measurement [55.2480439325792]
We show that optical losses inside cavity restrict back action exclusion due to loss noise.
We analyze how two-photon (nondegenerate) and conventional (degenerate) squeezing improve sensitivity with account optical losses.
arXiv Detail & Related papers (2023-10-06T18:41:29Z) - Probing the symmetry breaking of a light--matter system by an ancillary
qubit [50.591267188664666]
Hybrid quantum systems in the ultrastrong, and even more in the deep-strong, coupling regimes can exhibit exotic physical phenomena.
We experimentally observe the parity symmetry breaking of an ancillary Xmon artificial atom induced by the field of a lumped-element superconducting resonator.
This result opens a way to experimentally explore the novel quantum-vacuum effects emerging in the deep-strong coupling regime.
arXiv Detail & Related papers (2022-09-13T06:14:08Z) - Broadband Coherent Multidimensional Variational Measurement [0.0]
We show that usage of a multidimensional optical transducer may enable a broadband quantum back action evading measurement.
We discuss how proposed scheme relates to multidimensional system containing quantum-free subsystems.
arXiv Detail & Related papers (2022-05-07T19:52:25Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Floquet engineering of optical nonlinearities: a quantum many-body
approach [0.0]
Floquet-engineering has been extensively applied to a wide range of classical and quantum settings.
We show that effective optical nonlinearities can be created by subjecting the light field to a repeated pulse sequence.
arXiv Detail & Related papers (2022-03-10T18:58:35Z) - Two-mode Schr\"odinger-cat states with nonlinear optomechanics:
generation and verification of non-Gaussian mechanical entanglement [0.0]
We introduce a pulsed approach that utilizes the nonlinearity of the radiation-pressure interaction combined with photon-counting measurements.
We describe a protocol using subsequent pulsed interactions to verify the non-Gaussian entanglement generated.
Our scheme offers significant potential for further research and development that utilizes such non-Gaussian states for quantum-information and sensing applications.
arXiv Detail & Related papers (2021-09-17T12:58:52Z) - Single-mode input squeezing and tripartite entanglement in three-mode
ponderomotive optomechanics simulations [0.0]
This article proposes a new scheme in which two single-mode squeezed light fields are injected into an optomechanical cavity.
We demonstrate through our numerical simulations that the quantum entanglement can be substantially enhanced with the careful selection of squeezing strength and squeezing angle of the two quadrature squeezed light fields.
arXiv Detail & Related papers (2021-07-15T00:25:59Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Beyond linear coupling in microwave optomechanics [0.0]
We analyze the results in the framework of an extended nonlinear optomechanical theory.
No thermo-optical instabilities are observed, in contrast with laser-driven systems.
We find that the motion imprints a wide comb of extremely narrow peaks in the microwave output field.
arXiv Detail & Related papers (2020-03-06T13:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.