論文の概要: Traffic Signs Detection and Recognition System using Deep Learning
- arxiv url: http://arxiv.org/abs/2003.03256v1
- Date: Fri, 6 Mar 2020 14:54:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 01:10:26.849584
- Title: Traffic Signs Detection and Recognition System using Deep Learning
- Title(参考訳): ディープラーニングを用いた交通標識検出・認識システム
- Authors: Pavly Salah Zaki, Marco Magdy William, Bolis Karam Soliman, Kerolos
Gamal Alexsan, Keroles Khalil, and Magdy El-Moursy
- Abstract要約: 本稿では,交通標識をリアルタイムに検出・認識するためのアプローチについて述べる。
マルチオブジェクト検出システムの最先端技術を用いて,交通信号検出問題に取り組む。
この論文の焦点は、F-RCNN Inception v2とTiny YOLO v2が最高の結果を得たときのものである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of technology, automobiles have become an
essential asset in our day-to-day lives. One of the more important researches
is Traffic Signs Recognition (TSR) systems. This paper describes an approach
for efficiently detecting and recognizing traffic signs in real-time, taking
into account the various weather, illumination and visibility challenges
through the means of transfer learning. We tackle the traffic sign detection
problem using the state-of-the-art of multi-object detection systems such as
Faster Recurrent Convolutional Neural Networks (F-RCNN) and Single Shot Multi-
Box Detector (SSD) combined with various feature extractors such as MobileNet
v1 and Inception v2, and also Tiny-YOLOv2. However, the focus of this paper is
going to be F-RCNN Inception v2 and Tiny YOLO v2 as they achieved the best
results. The aforementioned models were fine-tuned on the German Traffic Signs
Detection Benchmark (GTSDB) dataset. These models were tested on the host PC as
well as Raspberry Pi 3 Model B+ and the TASS PreScan simulation. We will
discuss the results of all the models in the conclusion section.
- Abstract(参考訳): 技術の急速な発展により、自動車は日々の生活において不可欠な資産になっている。
最も重要な研究の1つは交通信号認識(TSR)システムである。
本稿では,移動学習による様々な天候,照明,視認性の課題を考慮し,交通標識をリアルタイムで効率的に検出・認識する手法について述べる。
本稿では,f-rcnn(fastly recurrent convolutional neural networks)やssd(single shot multibox detector)といったマルチオブジェクト検出システムの最先端技術とmobilenet v1やinception v2といった様々な特徴抽出器とtiny-yolov2を組み合わせたトラヒックサイン検出問題に対処する。
しかし,本論文の焦点は,F-RCNN インセプション v2 と Tiny YOLO v2 である。
上記のモデルは、ドイツのtraffic signs detection benchmark (gtsdb)データセットで微調整された。
これらのモデルはホストPCとRaspberry Pi 3 Model B+およびTASS PreScanシミュレーションでテストされた。
結論のセクションでは、すべてのモデルの結果について論じる。
関連論文リスト
- Real-Time Pedestrian Detection on IoT Edge Devices: A Lightweight Deep Learning Approach [1.4732811715354455]
本研究では,AIoT(Artificial Intelligence of Things)エッジデバイス上での軽量ディープラーニングモデルの実装について検討する。
You Only Look Once (YOLO)ベースのDLモデルは、リアルタイムな歩行者検出のためにデプロイされる。
シミュレーションの結果、最適化されたYOLOモデルは、高速な推論速度147ミリ秒、フレームレート2.3フレーム/秒、精度78%でリアルタイムな歩行者検出を実現できることが示された。
論文 参考訳(メタデータ) (2024-09-24T04:48:41Z) - Detecting train driveshaft damages using accelerometer signals and
Differential Convolutional Neural Networks [67.60224656603823]
本稿では,高度2次元畳み込みニューラルネットワーク(CNN)アーキテクチャに基づく鉄道軸状態監視システムの開発を提案する。
その結果,鉄道軸受振動信号を時間周波数領域表現,すなわち分光図に変換し,そのひび割れに応じて2次元CNNを訓練する。
論文 参考訳(メタデータ) (2022-11-15T15:04:06Z) - Real-Time Driver Monitoring Systems through Modality and View Analysis [28.18784311981388]
ドライバーの気晴らしが道路事故の主要な原因であることが知られている。
State-of-the-artメソッドはレイテンシを無視しながら精度を優先する。
本稿では,ビデオフレーム間の時間的関係を無視した時間効率な検出モデルを提案する。
論文 参考訳(メタデータ) (2022-10-17T21:22:41Z) - Blind-Spot Collision Detection System for Commercial Vehicles Using
Multi Deep CNN Architecture [0.17499351967216337]
高レベル特徴記述子に基づく2つの畳み込みニューラルネットワーク(CNN)は、重車両の盲点衝突を検出するために提案される。
盲点車両検出のための高次特徴抽出のための2つの事前学習ネットワークを統合するために,融合手法を提案する。
機能の融合により、より高速なR-CNNの性能が大幅に向上し、既存の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-17T11:10:37Z) - Federated Deep Learning Meets Autonomous Vehicle Perception: Design and
Verification [168.67190934250868]
フェデレーテッド・ラーニング・パワード・コネクテッド・オートモービル(FLCAV)が提案されている。
FLCAVは通信とアノテーションのコストを削減しながらプライバシを保存する。
マルチステージトレーニングのためのネットワークリソースと道路センサのポーズを決定することは困難である。
論文 参考訳(メタデータ) (2022-06-03T23:55:45Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Traffic-Net: 3D Traffic Monitoring Using a Single Camera [1.1602089225841632]
我々は,1台のCCTVトラヒックカメラを用いたリアルタイムトラヒック監視のための実用的なプラットフォームを提供する。
車両・歩行者検出のためのカスタムYOLOv5ディープニューラルネットワークモデルとSORT追跡アルゴリズムの改良を行った。
また、短時間・長期の時間的ビデオデータストリームに基づく階層的なトラフィックモデリングソリューションも開発している。
論文 参考訳(メタデータ) (2021-09-19T16:59:01Z) - A Driving Behavior Recognition Model with Bi-LSTM and Multi-Scale CNN [59.57221522897815]
運転行動認識のための軌道情報に基づくニューラルネットワークモデルを提案する。
提案手法を公開BLVDデータセット上で評価し,満足な性能を実現する。
論文 参考訳(メタデータ) (2021-03-01T06:47:29Z) - Convolutional Neural Network-based Intrusion Detection System for AVTP
Streams in Automotive Ethernet-based Networks [2.141079906482723]
コネクテッド・アンド・オートマチック・ビークル(CAV)は、伝統的な自動車の革新的な形態である。
以前の研究では、自動車イーサネットベースのネットワークにおける侵入検知に焦点が当てられていない。
本稿では,AVTPストリームインジェクション攻撃の侵入検出手法を提案する。
論文 参考訳(メタデータ) (2021-02-06T09:37:09Z) - Anchor-free Small-scale Multispectral Pedestrian Detection [88.7497134369344]
適応型単一段アンカーフリーベースアーキテクチャにおける2つのモードの効果的かつ効率的な多重スペクトル融合法を提案する。
我々は,直接的境界ボックス予測ではなく,対象の中心と規模に基づく歩行者表現の学習を目指す。
その結果,小型歩行者の検出における本手法の有効性が示唆された。
論文 参考訳(メタデータ) (2020-08-19T13:13:01Z) - Training-free Monocular 3D Event Detection System for Traffic
Surveillance [93.65240041833319]
既存のイベント検出システムは、主に学習ベースであり、大量のトレーニングデータが利用可能な場合、十分なパフォーマンスを実現している。
現実のシナリオでは、十分なラベル付きトレーニングデータの収集は高価であり、時には不可能である。
本稿では,交通監視のためのトレーニング不要な単眼3Dイベント検出システムを提案する。
論文 参考訳(メタデータ) (2020-02-01T04:42:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。