論文の概要: Nature-Inspired Optimization Algorithms: Challenges and Open Problems
- arxiv url: http://arxiv.org/abs/2003.03776v1
- Date: Sun, 8 Mar 2020 13:00:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 13:57:33.187740
- Title: Nature-Inspired Optimization Algorithms: Challenges and Open Problems
- Title(参考訳): 自然に着想を得た最適化アルゴリズム : 課題と課題
- Authors: Xin-She Yang
- Abstract要約: 科学と工学の問題は、複雑な非線形制約の下で最適化問題として定式化することができる。
非常に非線形な問題の解は通常、洗練された最適化アルゴリズムを必要とし、伝統的なアルゴリズムはそのような問題に対処するのに苦労する。
現在のトレンドは、柔軟性と有効性から自然にインスパイアされたアルゴリズムを使用することです。
- 参考スコア(独自算出の注目度): 3.7692411550925673
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many problems in science and engineering can be formulated as optimization
problems, subject to complex nonlinear constraints. The solutions of highly
nonlinear problems usually require sophisticated optimization algorithms, and
traditional algorithms may struggle to deal with such problems. A current trend
is to use nature-inspired algorithms due to their flexibility and
effectiveness. However, there are some key issues concerning nature-inspired
computation and swarm intelligence. This paper provides an in-depth review of
some recent nature-inspired algorithms with the emphasis on their search
mechanisms and mathematical foundations. Some challenging issues are identified
and five open problems are highlighted, concerning the analysis of algorithmic
convergence and stability, parameter tuning, mathematical framework, role of
benchmarking and scalability. These problems are discussed with the directions
for future research.
- Abstract(参考訳): 科学と工学における多くの問題は、複雑な非線形制約の下で最適化問題として定式化することができる。
高度に非線形な問題の解は通常高度な最適化アルゴリズムを必要とするが、従来のアルゴリズムはそのような問題に対処するのに苦労することがある。
現在のトレンドは、柔軟性と有効性から自然にインスパイアされたアルゴリズムを使用することです。
しかし、自然にインスパイアされた計算と群知性にはいくつかの重要な問題がある。
本稿では,近年の自然に触発されたアルゴリズムについて,その探索機構と数学的基礎を重視した詳細なレビューを行う。
アルゴリズムの収束と安定性の分析、パラメータチューニング、数学的フレームワーク、ベンチマークの役割、スケーラビリティに関する5つの課題が指摘されている。
これらの問題を今後の研究の方向性として論じる。
関連論文リスト
- A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
近年の大きなトレンドは、自然に着想を得たメタヒュースティックアルゴリズム(NIMA)の利用である。
文献には540以上のアルゴリズムがあり、異なるアルゴリズムの探索機構を理解するための統一的なフレームワークはない。
20以上の異なるアルゴリズムを統一する一般化された進化的メタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-02T09:55:15Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
本稿では,契約設計によるオンライン学習問題において,利害関係者の経済的利益を整合させる理論的枠組みを提案する。
計画問題に対して、遠目エージェントに対する最適契約を決定するための効率的な動的プログラミングアルゴリズムを設計する。
学習問題に対して,契約の堅牢な設計から探索と搾取のバランスに至るまでの課題を解き放つために,非回帰学習アルゴリズムの汎用設計を導入する。
論文 参考訳(メタデータ) (2024-07-01T16:53:00Z) - Nature-Inspired Algorithms in Optimization: Introduction, Hybridization
and Insights [1.6589012298747952]
ベンチマークは最適化アルゴリズムの性能を評価する上で重要である。
本章では、最適化の概要、自然に触発されたアルゴリズム、ハイブリッド化の役割について論じる。
論文 参考訳(メタデータ) (2023-08-30T11:33:22Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Nature-Inspired Optimization Algorithms: Research Direction and Survey [0.0]
自然に着想を得たアルゴリズムは、様々な最適化問題を解くのによく用いられる。
我々は自然に触発されたアルゴリズムを自然進化ベース、群知性ベース、生物ベース、科学ベースなどと分類する。
本研究の目的は, インスピレーション源, 基本演算子, 制御パラメータ, 特徴, 変種, 適用範囲に基づいて, 様々な自然に着想を得たアルゴリズムを網羅的に解析することである。
論文 参考訳(メタデータ) (2021-02-08T06:03:36Z) - A Survey On (Stochastic Fractal Search) Algorithm [0.0]
本稿ではフラクタルという数学的概念に基づく成長の自然現象に着想を得たフラクタル探索というメタヒューリスティックなアルゴリズムを提案する。
本論文は,提案アルゴリズムに適用される文献において一般的に用いられる工学設計最適化問題のステップと応用例にも注目する。
論文 参考訳(メタデータ) (2021-01-25T22:44:04Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra [53.46106569419296]
我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
論文 参考訳(メタデータ) (2020-11-09T01:13:07Z) - Mapping of Real World Problems to Nature Inspired Algorithm using Goal
based Classification and TRIZ [0.0]
実世界の問題を自然問題にマッピングするためのTRIZに基づく新しい手法を解説する。
この枠組みを機能させるためには、自然が達成しようとする最終目標に基づいた新しいNIA分類が考案された。
論文 参考訳(メタデータ) (2020-10-08T06:55:31Z) - The limits of min-max optimization algorithms: convergence to spurious
non-critical sets [82.74514886461257]
min-max最適化アルゴリズムは周期サイクルや同様の現象が存在するため、はるかに大きな問題に遭遇する。
問題のどの点も引き付けないアルゴリズムが存在することを示す。
ほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほぼほとんどである。
論文 参考訳(メタデータ) (2020-06-16T10:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。