論文の概要: Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra
- arxiv url: http://arxiv.org/abs/2011.04125v7
- Date: Tue, 28 Jun 2022 18:10:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 02:40:37.059984
- Title: Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra
- Title(参考訳): ランダム化数値線形代数による量子インスピレーションアルゴリズム
- Authors: Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, Honghao Lin, David
P. Woodruff
- Abstract要約: 我々は、リコメンダシステムと最小二乗回帰のためのクエリをサポートする古典的な(量子でない)動的データ構造を作成する。
これらの問題に対する以前の量子インスパイアされたアルゴリズムは、レバレッジやリッジレベレッジスコアを偽装してサンプリングしていると我々は主張する。
- 参考スコア(独自算出の注目度): 53.46106569419296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We create classical (non-quantum) dynamic data structures supporting queries
for recommender systems and least-squares regression that are comparable to
their quantum analogues. De-quantizing such algorithms has received a flurry of
attention in recent years; we obtain sharper bounds for these problems. More
significantly, we achieve these improvements by arguing that the previous
quantum-inspired algorithms for these problems are doing leverage or
ridge-leverage score sampling in disguise; these are powerful and standard
techniques in randomized numerical linear algebra. With this recognition, we
are able to employ the large body of work in numerical linear algebra to obtain
algorithms for these problems that are simpler or faster (or both) than
existing approaches. Our experiments demonstrate that the proposed data
structures also work well on real-world datasets.
- Abstract(参考訳): 我々は古典的(量子でない)動的データ構造を作成し、リコメンダシステムのためのクエリと、量子アナログに匹敵する最小二乗回帰をサポートする。
近年,このようなアルゴリズムの非量子化が注目されている。
さらに、これらの改善は、これらの問題に対する以前の量子インスパイアされたアルゴリズムが、擬似的にレバレッジやリッジ平均スコアのサンプリングを行っていることを論じることで達成される。
この認識により、数値線形代数において、既存のアプローチよりも単純で(あるいはより高速な)これらの問題に対するアルゴリズムを得るために、大きな仕事の本体を利用できる。
実験により,提案するデータ構造が実世界のデータセットでもうまく機能することを実証した。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
量子コンピューティングは、アルゴリズムを設計する新しい方法の基礎となる。
どの場の量子スピードアップが達成できるかという新たな課題が生じる。
量子サブルーチンの設計は、従来のサブルーチンよりも効率的で、新しい強力な量子アルゴリズムに固い柱を向ける。
論文 参考訳(メタデータ) (2024-02-26T09:32:07Z) - Robust Dequantization of the Quantum Singular value Transformation and
Quantum Machine Learning Algorithms [0.0]
この弱い仮定の下では、ランダム化線形代数の技法がどれだけ多く適用できるかを示す。
また、これらの結果を用いて、多くの量子機械学習アルゴリズムの頑健な復号化を行う。
論文 参考訳(メタデータ) (2023-04-11T02:09:13Z) - Quantum Algorithm For Estimating Eigenvalue [0.0]
与えられたエルミート行列の大きさで最大の固有値を推定するための量子アルゴリズムを提供する。
我々の量子プロシージャは、同じ問題を解決する古典的なアルゴリズムと比較して指数的なスピードアップを得ることができる。
論文 参考訳(メタデータ) (2022-11-11T13:02:07Z) - A streamlined quantum algorithm for topological data analysis with
exponentially fewer qubits [5.478764356647437]
永続ベッチ数を計算するための改良された量子アルゴリズムを提案する。
量子アルゴリズムが実用的なタスクの指数的高速化を達成できるかどうかを論じる。
論文 参考訳(メタデータ) (2022-09-26T17:56:11Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum-Inspired Classical Algorithm for Principal Component Regression [1.9105479266011323]
本研究では,データ点数に対して時間的多元対数で動作する主成分回帰のアルゴリズムを開発する。
この指数的なスピードアップは、より大きなデータセットにおける潜在的な応用を可能にする。
論文 参考訳(メタデータ) (2020-10-16T20:50:48Z) - Towards quantum advantage via topological data analysis [0.0]
ロイズ,ガーネロン,ザナルディのトポロジカルデータ解析のためのアルゴリズムの背後にある量子アルゴリズムについて検討する。
ランク推定や複雑なネットワーク解析などの問題に対して,多数の新しい量子アルゴリズムを提供する。
論文 参考訳(メタデータ) (2020-05-06T06:31:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。