MCMC Guided CNN Training and Segmentation for Pancreas Extraction
- URL: http://arxiv.org/abs/2003.03938v1
- Date: Mon, 9 Mar 2020 06:27:08 GMT
- Title: MCMC Guided CNN Training and Segmentation for Pancreas Extraction
- Authors: Jinchan He, Xiaxia Yu, Chudong Cai, Yi Gao
- Abstract summary: The pancreas has high anatomical variability in shape, size and location.
The proposed method uses a Markov Chain Monte Carlo (MCMC) sampling guided convolutional neural network (CNN) approach.
The method is evaluated on the NIH pancreatic datasets which contains 82 abdominal contrast-enhanced CT volumes.
- Score: 13.264181188509266
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient organ segmentation is the precondition of various quantitative
analysis. Segmenting the pancreas from abdominal CT images is a challenging
task because of its high anatomical variability in shape, size and location.
What's more, the pancreas only occupies a small portion in abdomen, and the
organ border is very fuzzy. All these factors make the segmentation methods of
other organs less suitable for the pancreas segmentation. In this report, we
propose a Markov Chain Monte Carlo (MCMC) sampling guided convolutional neural
network (CNN) approach, in order to handle such difficulties in morphological
and photometric variabilities. Specifically, the proposed method mainly
contains three steps: First, registration is carried out to mitigate the body
weight and location variability. Then, an MCMC sampling is employed to guide
the sampling of 3D patches, which are fed to the CNN for training. At the same
time, the pancreas distribution is also learned for the subsequent
segmentation. Third, sampled from the learned distribution, an MCMC process
guides the segmentation process. Lastly, the patches based segmentation is
fused using a Bayesian voting scheme. This method is evaluated on the NIH
pancreatic datasets which contains 82 abdominal contrast-enhanced CT volumes.
Finally, we achieved a competitive result of 78.13% Dice Similarity Coefficient
value and 82.65% Recall value in testing data.
Related papers
- Weakly-Supervised Detection of Bone Lesions in CT [48.34559062736031]
The skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate.
We developed a pipeline to detect bone lesions in CT volumes via a proxy segmentation task.
Our method detected bone lesions in CT with a precision of 96.7% and recall of 47.3% despite the use of incomplete and partial training data.
arXiv Detail & Related papers (2024-01-31T21:05:34Z) - M3BUNet: Mobile Mean Max UNet for Pancreas Segmentation on CT-Scans [25.636974007788986]
We propose M3BUNet, a fusion of MobileNet and U-Net neural networks, equipped with a novel Mean-Max (MM) attention that operates in two stages to gradually segment pancreas CT images.
For the fine segmentation stage, we found that applying a wavelet decomposition filter to create multi-input images enhances pancreas segmentation performance.
Our approach demonstrates a considerable performance improvement, achieving an average Dice Similarity Coefficient (DSC) value of up to 89.53% and an Intersection Over Union (IOU) score of up to 81.16 for the NIH pancreas dataset.
arXiv Detail & Related papers (2024-01-18T23:10:08Z) - SCPMan: Shape Context and Prior Constrained Multi-scale Attention
Network for Pancreatic Segmentation [39.70422146937986]
We propose a multiscale attention network with shape context and prior constraint for robust pancreas segmentation.
Our architecture provides robust segmentation performance, against the blurry boundaries, and variations in scale and shape of pancreas.
arXiv Detail & Related papers (2023-12-26T03:00:25Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
We created a large-scale dataset of 10,021 thoracic CTs with 157 labels.
We applied an ensemble of 3D anatomy segmentation models to extract anatomical pseudo-labels.
Our resulting segmentation models demonstrated remarkable performance on CXR.
arXiv Detail & Related papers (2023-06-06T18:01:08Z) - 3D PETCT Tumor Lesion Segmentation via GCN Refinement [4.929126432666667]
We propose a post-processing method based on a graph convolutional neural network (GCN) to refine inaccurate segmentation parts.
We perform tumor segmentation experiments on the PET/CT dataset in the MICCIA2022 autoPET challenge.
The experimental results show that the false positive rate is effectively reduced with nnUNet-GCN refinement.
arXiv Detail & Related papers (2023-02-24T10:52:08Z) - Efficient liver segmentation with 3D CNN using computed tomography scans [0.0]
Liver diseases due to liver tumors are one of the most common reasons around the globe.
Many imaging modalities can be used as aiding tools to detect liver tumors.
This paper proposed an efficient automatic liver segmentation framework to detect and segment the liver out of CT abdomen scans.
arXiv Detail & Related papers (2022-08-28T19:02:39Z) - Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical
Image Segmentation [92.9634065964963]
We present a new semi-supervised segmentation model, namely, conservative-radical network (CoraNet) based on our uncertainty estimation and separate self-training strategy.
Compared with the current state of the art, our CoraNet has demonstrated superior performance.
arXiv Detail & Related papers (2021-10-17T08:49:33Z) - Automatic size and pose homogenization with spatial transformer network
to improve and accelerate pediatric segmentation [51.916106055115755]
We propose a new CNN architecture that is pose and scale invariant thanks to the use of Spatial Transformer Network (STN)
Our architecture is composed of three sequential modules that are estimated together during training.
We test the proposed method in kidney and renal tumor segmentation on abdominal pediatric CT scanners.
arXiv Detail & Related papers (2021-07-06T14:50:03Z) - 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass
Segmentation, Diagnosis, and Quantitative Patient Management [21.788423806147378]
We exploit the feasibility to distinguish pancreatic ductal adenocarcinoma (PDAC) from the nine other nonPDAC masses using multi-phase CT imaging.
We propose a holistic segmentation-mesh-classification network (SMCN) to provide patient-level diagnosis.
arXiv Detail & Related papers (2020-12-08T19:38:01Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.