TEDL: A Text Encryption Method Based on Deep Learning
- URL: http://arxiv.org/abs/2003.04038v2
- Date: Wed, 11 Mar 2020 03:47:14 GMT
- Title: TEDL: A Text Encryption Method Based on Deep Learning
- Authors: Xiang Li and Peng Wang
- Abstract summary: This paper proposes a novel text encryption method based on deep learning called TEDL.
Results of experiments and relevant analyses show that TEDL performs well for security, efficiency, generality, and has a lower demand for the frequency of key redistribution.
- Score: 10.428079716944463
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen an increasing emphasis on information security, and
various encryption methods have been proposed. However, for symmetric
encryption methods, the well-known encryption techniques still rely on the key
space to guarantee security and suffer from frequent key updating. Aiming to
solve those problems, this paper proposes a novel text encryption method based
on deep learning called TEDL, where the secret key includes hyperparameters in
deep learning model and the core step of encryption is transforming input data
into weights trained under hyperparameters. Firstly, both communication parties
establish a word vector table by training a deep learning model according to
specified hyperparameters. Then, a self-update codebook is constructed on the
word vector table with the SHA-256 function and other tricks. When
communication starts, encryption and decryption are equivalent to indexing and
inverted indexing on the codebook, respectively, thus achieving the
transformation between plaintext and ciphertext. Results of experiments and
relevant analyses show that TEDL performs well for security, efficiency,
generality, and has a lower demand for the frequency of key redistribution.
Especially, as a supplement to current encryption methods, the time-consuming
process of constructing a codebook increases the difficulty of brute-force
attacks while not degrade the communication efficiency.
Related papers
- HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
Large language models (LLMs) have shown great potential for automatic code generation.
Recent studies highlight that many LLM-generated code contains serious security vulnerabilities.
We introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes.
arXiv Detail & Related papers (2024-09-10T12:01:43Z) - Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption [1.8749305679160366]
We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
arXiv Detail & Related papers (2024-06-24T16:56:22Z) - Lightweight Cryptanalysis of IoT Encryption Algorithms : Is Quota Sampling the Answer? [0.0]
Two well-known lightweight algorithms are SIMON and SIMECK which have been specifically designed for use on resource-constrained IoT devices.
It is necessary to test these algorithms for resilience against differential cryptanalysis attacks.
In this paper, we introduce Versatile Investigative Sampling Technique for Advanced Cryptanalysis.
arXiv Detail & Related papers (2024-04-12T00:08:39Z) - CodeChameleon: Personalized Encryption Framework for Jailbreaking Large
Language Models [49.60006012946767]
We propose CodeChameleon, a novel jailbreak framework based on personalized encryption tactics.
We conduct extensive experiments on 7 Large Language Models, achieving state-of-the-art average Attack Success Rate (ASR)
Remarkably, our method achieves an 86.6% ASR on GPT-4-1106.
arXiv Detail & Related papers (2024-02-26T16:35:59Z) - Cryptanalysis and improvement of multimodal data encryption by
machine-learning-based system [0.0]
encryption algorithms to accommodate varied requirements of this field.
Best approach to analyzing an encryption algorithm is to identify a practical and efficient technique to break it.
arXiv Detail & Related papers (2024-02-24T10:02:21Z) - Coding-Based Hybrid Post-Quantum Cryptosystem for Non-Uniform Information [53.85237314348328]
We introduce for non-uniform messages a novel hybrid universal network coding cryptosystem (NU-HUNCC)
We show that NU-HUNCC is information-theoretic individually secured against an eavesdropper with access to any subset of the links.
arXiv Detail & Related papers (2024-02-13T12:12:39Z) - Leveraging a Randomized Key Matrix to Enhance the Security of Symmetric Substitution Ciphers [0.0]
An innovative strategy to enhance the security of symmetric substitution ciphers is presented.
It is implemented through the implementation of a randomized key matrix suitable for various file formats.
arXiv Detail & Related papers (2023-11-29T21:13:38Z) - Lightweight Public Key Encryption in Post-Quantum Computing Era [0.0]
Confidentiality in our digital world is based on the security of cryptographic algorithms.
In the course of technological progress with quantum computers, the protective function of common encryption algorithms is threatened.
Our concept describes the transformation of a classical asymmetric encryption method to a modern complexity class.
arXiv Detail & Related papers (2023-11-24T21:06:42Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.