Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption
- URL: http://arxiv.org/abs/2406.16792v1
- Date: Mon, 24 Jun 2024 16:56:22 GMT
- Title: Deep Learning and Chaos: A combined Approach To Image Encryption and Decryption
- Authors: Bharath V Nair, Vismaya V S, Sishu Shankar Muni, Ali Durdu,
- Abstract summary: We introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN)
The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements.
- Score: 1.8749305679160366
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we introduce a novel image encryption and decryption algorithm using hyperchaotic signals from the novel 3D hyperchaotic map, 2D memristor map, Convolutional Neural Network (CNN), and key sensitivity analysis to achieve robust security and high efficiency. The encryption starts with the scrambling of gray images by using a 3D hyperchaotic map to yield complex sequences under disruption of pixel values; the robustness of this original encryption is further reinforced by employing a CNN to learn the intricate patterns and add the safety layer. The robustness of the encryption algorithm is shown by key sensitivity analysis, i.e., the average sensitivity of the algorithm to key elements. The other factors and systems of unauthorized decryption, even with slight variations in the keys, can alter the decryption procedure, resulting in the ineffective recreation of the decrypted image. Statistical analysis includes entropy analysis, correlation analysis, histogram analysis, and other security analyses like anomaly detection, all of which confirm the high security and effectiveness of the proposed encryption method. Testing of the algorithm under various noisy conditions is carried out to test robustness against Gaussian noise. Metrics for differential analysis, such as the NPCR (Number of Pixel Change Rate)and UACI (Unified Average Change Intensity), are also used to determine the strength of encryption. At the same time, the empirical validation was performed on several test images, which showed that the proposed encryption techniques have practical applicability and are robust to noise. Simulation results and comparative analyses illustrate that our encryption scheme possesses excellent visual security, decryption quality, and computational efficiency, and thus, it is efficient for secure image transmission and storage in big data applications.
Related papers
- Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - Lightweight Cryptanalysis of IoT Encryption Algorithms : Is Quota Sampling the Answer? [0.0]
Two well-known lightweight algorithms are SIMON and SIMECK which have been specifically designed for use on resource-constrained IoT devices.
It is necessary to test these algorithms for resilience against differential cryptanalysis attacks.
In this paper, we introduce Versatile Investigative Sampling Technique for Advanced Cryptanalysis.
arXiv Detail & Related papers (2024-04-12T00:08:39Z) - Noise-Crypt: Image Encryption with Non-linear Noise, Hybrid Chaotic Maps, and Hashing [0.8205507411993582]
Noise-Crypt is an image encryption algorithm that integrates non-linear random noise, hybrid chaotic maps, and SHA-256 hashing algorithm.
The proposed scheme has been evaluated for several security parameters, such as differential attacks, entropy, correlation, etc.
Results of the security analysis validate the potency of the proposed scheme in achieving robust image encryption.
arXiv Detail & Related papers (2023-09-20T17:11:35Z) - Human-imperceptible, Machine-recognizable Images [76.01951148048603]
A major conflict is exposed relating to software engineers between better developing AI systems and distancing from the sensitive training data.
This paper proposes an efficient privacy-preserving learning paradigm, where images are encrypted to become human-imperceptible, machine-recognizable''
We show that the proposed paradigm can ensure the encrypted images have become human-imperceptible while preserving machine-recognizable information.
arXiv Detail & Related papers (2023-06-06T13:41:37Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
We show that a steganography procedure is perfectly secure under Cachin 1998's information-theoretic model of steganography.
We also show that, among perfectly secure procedures, a procedure maximizes information throughput if and only if it is induced by a minimum entropy coupling.
arXiv Detail & Related papers (2022-10-24T17:40:07Z) - A novel conservative chaos driven dynamic DNA coding for image
encryption [0.0]
The proposed image encryption algorithm is a dynamic DNA coding algorithm.
The results are promising and prove the robustness of the algorithm against various common cryptanalytic attacks.
arXiv Detail & Related papers (2022-07-12T11:40:09Z) - A Variational Quantum Attack for AES-like Symmetric Cryptography [69.80357450216633]
We propose a variational quantum attack algorithm (VQAA) for classical AES-like symmetric cryptography.
In the VQAA, the known ciphertext is encoded as the ground state of a Hamiltonian that is constructed through a regular graph.
arXiv Detail & Related papers (2022-05-07T03:15:15Z) - NEQRX: Efficient Quantum Image Encryption with Reduced Circuit Complexity [2.7985570786346745]
We propose an efficient implementation scheme for a quantum image encryption algorithm combining the generalized affine transform and logistic map.
We achieve a remarkable 50% reduction in cost while maintaining security and efficiency.
arXiv Detail & Related papers (2022-04-14T10:15:23Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
Cold boot attacks inspect the corrupted random access memory soon after the power has been shut down.
In this work, we combine a novel cryptographic variant of a deep error correcting code technique with a modified SAT solver scheme to apply the attack on AES keys.
Our results show that our methods outperform the state of the art attack methods by a very large margin.
arXiv Detail & Related papers (2021-06-09T07:57:01Z) - Generalized Iris Presentation Attack Detection Algorithm under
Cross-Database Settings [63.90855798947425]
Presentation attacks pose major challenges to most of the biometric modalities.
We propose a generalized deep learning-based presentation attack detection network, MVANet.
It is inspired by the simplicity and success of hybrid algorithm or fusion of multiple detection networks.
arXiv Detail & Related papers (2020-10-25T22:42:27Z) - HERS: Homomorphically Encrypted Representation Search [56.87295029135185]
We present a method to search for a probe (or query) image representation against a large gallery in the encrypted domain.
Our encryption scheme is agnostic to how the fixed-length representation is obtained and can therefore be applied to any fixed-length representation in any application domain.
arXiv Detail & Related papers (2020-03-27T01:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.