A Survey on The Expressive Power of Graph Neural Networks
- URL: http://arxiv.org/abs/2003.04078v4
- Date: Fri, 16 Oct 2020 05:22:01 GMT
- Title: A Survey on The Expressive Power of Graph Neural Networks
- Authors: Ryoma Sato
- Abstract summary: Graph neural networks (GNNs) are effective machine learning models for various graph learning problems.
Despite their empirical successes, the theoretical limitations of GNNs have been revealed recently.
We provide a comprehensive overview of the expressive power of GNNs and provably powerful variants of GNNs.
- Score: 6.09170287691728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) are effective machine learning models for
various graph learning problems. Despite their empirical successes, the
theoretical limitations of GNNs have been revealed recently. Consequently, many
GNN models have been proposed to overcome these limitations. In this survey, we
provide a comprehensive overview of the expressive power of GNNs and provably
powerful variants of GNNs.
Related papers
- The Expressive Power of Graph Neural Networks: A Survey [9.08607528905173]
We conduct a first survey for models for enhancing expressive power under different forms of definition.
The models are reviewed based on three categories, i.e., Graph feature enhancement, Graph topology enhancement, and GNNs architecture enhancement.
arXiv Detail & Related papers (2023-08-16T09:12:21Z) - Understanding and Improving Deep Graph Neural Networks: A Probabilistic
Graphical Model Perspective [22.82625446308785]
We propose a novel view for understanding graph neural networks (GNNs)
In this work, we focus on deep GNNs and propose a novel view for understanding them.
We design a more powerful GNN: coupling graph neural network (CoGNet)
arXiv Detail & Related papers (2023-01-25T12:02:12Z) - Explainability in Graph Neural Networks: An Experimental Survey [12.440636971075977]
Graph neural networks (GNNs) have been extensively developed for graph representation learning.
GNNs suffer from the black-box problem as people cannot understand the mechanism underlying them.
Several GNN explainability methods have been proposed to explain the decisions made by GNNs.
arXiv Detail & Related papers (2022-03-17T11:25:41Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
Graph Neural Networks (GNNs) have boosted the performance for many graph-related tasks.
Recent studies have shown that GNNs are highly vulnerable to adversarial attacks, where adversaries can mislead the GNNs' prediction by modifying graphs.
We propose a novel attack framework (GEAttack) which can attack both a GNN model and its explanations by simultaneously exploiting their vulnerabilities.
arXiv Detail & Related papers (2021-08-07T07:44:33Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Attentive Graph Neural Networks for Few-Shot Learning [74.01069516079379]
Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks.
Despite its powerful capacity to learn and generalize the model from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep.
We propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism.
arXiv Detail & Related papers (2020-07-14T07:43:09Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z) - Random Features Strengthen Graph Neural Networks [40.60905158071766]
Graph neural networks (GNNs) are powerful machine learning models for various graph learning tasks.
In this paper, we demonstrate that GNNs become powerful just by adding a random feature to each node.
We show that the addition of random features enables GNNs to solve various problems that normal GNNs, including the graph convolutional networks (GCNs) and graph isomorphism networks (GINs) cannot solve.
arXiv Detail & Related papers (2020-02-08T12:47:29Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
Markov Logic Networks (MLNs) can be used to address many knowledge graph problems.
Inference in MLN is computationally intensive, making the industrial-scale application of MLN very difficult.
We propose a graph neural network (GNN) variant, named ExpressGNN, which strikes a nice balance between the representation power and the simplicity of the model.
arXiv Detail & Related papers (2020-01-29T23:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.