Variational Learning of Individual Survival Distributions
- URL: http://arxiv.org/abs/2003.04430v2
- Date: Sun, 13 Dec 2020 05:01:25 GMT
- Title: Variational Learning of Individual Survival Distributions
- Authors: Zidi Xiu, Chenyang Tao, Benjamin A. Goldstein, Ricardo Henao
- Abstract summary: We introduce a variational time-to-event prediction model, named Variational Survival Inference (VSI), which builds upon recent advances in distribution learning techniques and deep neural networks.
To validate effectiveness of our approach, an extensive set of experiments on both synthetic and real-world datasets is carried out, showing improved performance relative to competing solutions.
- Score: 21.40142425105635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The abundance of modern health data provides many opportunities for the use
of machine learning techniques to build better statistical models to improve
clinical decision making. Predicting time-to-event distributions, also known as
survival analysis, plays a key role in many clinical applications. We introduce
a variational time-to-event prediction model, named Variational Survival
Inference (VSI), which builds upon recent advances in distribution learning
techniques and deep neural networks. VSI addresses the challenges of
non-parametric distribution estimation by ($i$) relaxing the restrictive
modeling assumptions made in classical models, and ($ii$) efficiently handling
the censored observations, {\it i.e.}, events that occur outside the
observation window, all within the variational framework. To validate the
effectiveness of our approach, an extensive set of experiments on both
synthetic and real-world datasets is carried out, showing improved performance
relative to competing solutions.
Related papers
- Adaptive Transformer Modelling of Density Function for Nonparametric Survival Analysis [11.35395323124404]
Survival analysis holds a crucial role across diverse disciplines, such as economics, engineering and healthcare.
We propose a novel survival regression method capable of producing high-quality unimodal PDFs without any prior distribution assumption.
arXiv Detail & Related papers (2024-09-10T04:29:59Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - SAVAE: Leveraging the variational Bayes autoencoder for survival
analysis [10.0060346233449]
We introduce SAVAE (Survival Analysis Variational Autoencoder), a novel approach based on Variational Autoencoders.
Savoe contributes significantly to the field by introducing a tailored ELBO formulation for survival analysis.
It offers a general method that consistently performs well on various metrics, demonstrating robustness and stability through different experiments.
arXiv Detail & Related papers (2023-12-22T12:36:50Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Towards Out-of-Distribution Sequential Event Prediction: A Causal
Treatment [72.50906475214457]
The goal of sequential event prediction is to estimate the next event based on a sequence of historical events.
In practice, the next-event prediction models are trained with sequential data collected at one time.
We propose a framework with hierarchical branching structures for learning context-specific representations.
arXiv Detail & Related papers (2022-10-24T07:54:13Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Variational Disentanglement for Rare Event Modeling [21.269897066024306]
We propose a variational disentanglement approach to learn from rare events in heavily imbalanced classification problems.
Specifically, we leverage the imposed extreme-distribution behavior on a latent space to extract information from low-prevalence events.
arXiv Detail & Related papers (2020-09-17T21:35:36Z) - DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive
Surveillance of COVID-19 Using Heterogeneous Features and their Interactions [2.30238915794052]
We propose a deep learning model to forecast the range of increase in COVID-19 infected cases in future days.
Using data collected from various sources, we estimate the range of increase in infected cases seven days into the future for all U.S. counties.
arXiv Detail & Related papers (2020-07-31T23:37:38Z) - A comprehensive study on the prediction reliability of graph neural
networks for virtual screening [0.0]
We investigate the effects of model architectures, regularization methods, and loss functions on the prediction performance and reliability of classification results.
Our result highlights that correct choice of regularization and inference methods is evidently important to achieve high success rate.
arXiv Detail & Related papers (2020-03-17T10:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.