SAVAE: Leveraging the variational Bayes autoencoder for survival
analysis
- URL: http://arxiv.org/abs/2312.14651v1
- Date: Fri, 22 Dec 2023 12:36:50 GMT
- Title: SAVAE: Leveraging the variational Bayes autoencoder for survival
analysis
- Authors: Patricia A. Apell\'aniz and Juan Parras and Santiago Zazo
- Abstract summary: We introduce SAVAE (Survival Analysis Variational Autoencoder), a novel approach based on Variational Autoencoders.
Savoe contributes significantly to the field by introducing a tailored ELBO formulation for survival analysis.
It offers a general method that consistently performs well on various metrics, demonstrating robustness and stability through different experiments.
- Score: 10.0060346233449
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As in many fields of medical research, survival analysis has witnessed a
growing interest in the application of deep learning techniques to model
complex, high-dimensional, heterogeneous, incomplete, and censored medical
data. Current methods often make assumptions about the relations between data
that may not be valid in practice. In response, we introduce SAVAE (Survival
Analysis Variational Autoencoder), a novel approach based on Variational
Autoencoders. SAVAE contributes significantly to the field by introducing a
tailored ELBO formulation for survival analysis, supporting various parametric
distributions for covariates and survival time (as long as the log-likelihood
is differentiable). It offers a general method that consistently performs well
on various metrics, demonstrating robustness and stability through different
experiments. Our proposal effectively estimates time-to-event, accounting for
censoring, covariate interactions, and time-varying risk associations. We
validate our model in diverse datasets, including genomic, clinical, and
demographic data, with varying levels of censoring. This approach demonstrates
competitive performance compared to state-of-the-art techniques, as assessed by
the Concordance Index and the Integrated Brier Score. SAVAE also offers an
interpretable model that parametrically models covariates and time. Moreover,
its generative architecture facilitates further applications such as
clustering, data imputation, and the generation of synthetic patient data
through latent space inference from survival data.
Related papers
- SeqRisk: Transformer-augmented latent variable model for improved survival prediction with longitudinal data [4.1476925904032464]
We propose SeqRisk, a method that combines variational autoencoder (VAE) or longitudinal VAE (LVAE) with a transformer encoder and Cox proportional hazards module for risk prediction.
We demonstrate that SeqRisk performs competitively compared to existing approaches on both simulated and real-world datasets.
arXiv Detail & Related papers (2024-09-19T12:35:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
We propose a deep latent state-space generative model to capture the interactions among different types of correlated clinical events.
Our method also uncovers meaningful insights about the latent correlations among mortality and different types of organ failures.
arXiv Detail & Related papers (2024-07-28T02:42:36Z) - SurvTimeSurvival: Survival Analysis On The Patient With Multiple
Visits/Records [26.66492761632773]
The accurate prediction of survival times for patients with severe diseases remains a critical challenge despite recent advances in artificial intelligence.
This study introduces "SurvTimeSurvival: Survival Analysis On Patients With Multiple Visits/Records"
arXiv Detail & Related papers (2023-11-16T12:30:14Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - A Deep Variational Approach to Clustering Survival Data [5.871238645229228]
We introduce a novel probabilistic approach to cluster survival data in a variational deep clustering setting.
Our proposed method employs a deep generative model to uncover the underlying distribution of both the explanatory variables and the potentially censored survival times.
arXiv Detail & Related papers (2021-06-10T14:10:25Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Adversarial Sample Enhanced Domain Adaptation: A Case Study on
Predictive Modeling with Electronic Health Records [57.75125067744978]
We propose a data augmentation method to facilitate domain adaptation.
adversarially generated samples are used during domain adaptation.
Results confirm the effectiveness of our method and the generality on different tasks.
arXiv Detail & Related papers (2021-01-13T03:20:20Z) - Longitudinal Variational Autoencoder [1.4680035572775534]
A common approach to analyse high-dimensional data that contains missing values is to learn a low-dimensional representation using variational autoencoders (VAEs)
Standard VAEs assume that the learnt representations are i.i.d., and fail to capture the correlations between the data samples.
We propose the Longitudinal VAE (L-VAE), that uses a multi-output additive Gaussian process (GP) prior to extend the VAE's capability to learn structured low-dimensional representations.
Our approach can simultaneously accommodate both time-varying shared and random effects, produce structured low-dimensional representations
arXiv Detail & Related papers (2020-06-17T10:30:14Z) - A General Framework for Survival Analysis and Multi-State Modelling [70.31153478610229]
We use neural ordinary differential equations as a flexible and general method for estimating multi-state survival models.
We show that our model exhibits state-of-the-art performance on popular survival data sets and demonstrate its efficacy in a multi-state setting.
arXiv Detail & Related papers (2020-06-08T19:24:54Z) - Variational Learning of Individual Survival Distributions [21.40142425105635]
We introduce a variational time-to-event prediction model, named Variational Survival Inference (VSI), which builds upon recent advances in distribution learning techniques and deep neural networks.
To validate effectiveness of our approach, an extensive set of experiments on both synthetic and real-world datasets is carried out, showing improved performance relative to competing solutions.
arXiv Detail & Related papers (2020-03-09T22:09:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.