論文の概要: Better Set Representations For Relational Reasoning
- arxiv url: http://arxiv.org/abs/2003.04448v2
- Date: Wed, 17 Jun 2020 06:40:23 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-25 07:50:26.820148
- Title: Better Set Representations For Relational Reasoning
- Title(参考訳): リレーショナル推論のためのより良い集合表現
- Authors: Qian Huang, Horace He, Abhay Singh, Yan Zhang, Ser-Nam Lim, Austin
Benson
- Abstract要約: リレーショナル推論は、標準的なベクトル表現とは対照的に、エンティティのセットで動作する。
本稿では,SRN(Set Refiner Network)と呼ばれるシンプルで汎用的なネットワークモジュールを提案する。
- 参考スコア(独自算出の注目度): 30.398348643632445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incorporating relational reasoning into neural networks has greatly expanded
their capabilities and scope. One defining trait of relational reasoning is
that it operates on a set of entities, as opposed to standard vector
representations. Existing end-to-end approaches typically extract entities from
inputs by directly interpreting the latent feature representations as a set. We
show that these approaches do not respect set permutational invariance and thus
have fundamental representational limitations. To resolve this limitation, we
propose a simple and general network module called a Set Refiner Network (SRN).
We first use synthetic image experiments to demonstrate how our approach
effectively decomposes objects without explicit supervision. Then, we insert
our module into existing relational reasoning models and show that respecting
set invariance leads to substantial gains in prediction performance and
robustness on several relational reasoning tasks.
- Abstract(参考訳): 関係推論をニューラルネットワークに組み込むことで、その能力と範囲を大きく拡大した。
リレーショナル推論の特徴の1つは、標準的なベクトル表現とは対照的に、エンティティの集合で動作することである。
既存のエンドツーエンドアプローチは、通常、潜在特徴表現を集合として直接解釈することで、入力からエンティティを抽出する。
これらの手法は集合の置換不変性を尊重せず、したがって基本的な表現的制限を持つことを示す。
この制限を解決するために,SRN(Set Refiner Network)と呼ばれるシンプルで汎用的なネットワークモジュールを提案する。
まず, 画像合成実験を用いて, 対象物を効果的に分解する方法を, 明示的な監督なしに示す。
そして、既存の関係推論モデルにモジュールを挿入し、集合不変性に従えば、いくつかの関係推論タスクにおける予測性能とロバスト性が大幅に向上することを示す。
関連論文リスト
- Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
対象値が入力集合とサブセットの両方に条件付けされている場合、スーパーセットのテクスティ不変な統計量を関心のサブセットに組み込むことが不可欠であることを示す。
これにより、出力値がサブセットとその対応するスーパーセットの置換に不変であることを保証する。
論文 参考訳(メタデータ) (2024-02-05T16:09:35Z) - Entity or Relation Embeddings? An Analysis of Encoding Strategies for Relation Extraction [19.019881161010474]
関係抽出は、本質的にはテキスト分類問題であり、事前学習言語モデル(LM)を微調整することで取り組める。
既存のアプローチでは、LMを微調整して頭と尾のエンティティの埋め込みを学習し、それらのエンティティの埋め込みから関係を予測する。
本稿では,より直接的な方法で関係を捉えることにより,関係抽出モデルを改善することができるという仮説を立てる。
論文 参考訳(メタデータ) (2023-12-18T09:58:19Z) - Neural Constraint Satisfaction: Hierarchical Abstraction for
Combinatorial Generalization in Object Rearrangement [75.9289887536165]
基礎となるエンティティを明らかにするための階層的抽象化手法を提案する。
本研究では,エージェントのモデルにおける実体の状態の介入と,環境中の物体に作用する状態の対応関係を学習する方法を示す。
この対応を利用して、オブジェクトの異なる数や構成に一般化する制御法を開発する。
論文 参考訳(メタデータ) (2023-03-20T18:19:36Z) - Stochastic Deep Networks with Linear Competing Units for Model-Agnostic
Meta-Learning [4.97235247328373]
本研究は,LWTA(Local winner-takes-all)アクティベーションを伴うディープネットワークを考慮したメタラーニング(ML)に対処する。
このタイプのネットワークユニットは、ユニットが1つのユニットだけがゼロでない出力を生成するブロックに編成されるため、各モデルレイヤからスパース表現が生成される。
提案手法は,数ショット画像の分類と回帰実験における最先端の予測精度と,アクティブな学習環境における予測誤差の低減を実現する。
論文 参考訳(メタデータ) (2022-08-02T16:19:54Z) - Sparse Relational Reasoning with Object-Centric Representations [78.83747601814669]
対象中心表現の操作において,リレーショナルニューラルアーキテクチャによって学習されたソフトルールの構成可能性について検討する。
特に特徴量の増加は,いくつかのモデルの性能を向上し,より単純な関係をもたらすことが判明した。
論文 参考訳(メタデータ) (2022-07-15T14:57:33Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Combining Discrete Choice Models and Neural Networks through Embeddings:
Formulation, Interpretability and Performance [10.57079240576682]
本研究では、ニューラルネットワーク(ANN)を用いた理論とデータ駆動選択モデルを組み合わせた新しいアプローチを提案する。
特に、分類的または離散的説明変数を符号化するために、埋め込みと呼ばれる連続ベクトル表現を用いる。
我々のモデルは最先端の予測性能を提供し、既存のANNモデルよりも優れ、必要なネットワークパラメータの数を劇的に削減します。
論文 参考訳(メタデータ) (2021-09-24T15:55:31Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
画像合成のために訓練されたGAN(Generative Adversarial Networks)の潜在空間に、解釈可能な次元の豊富なセットが出現することが示されている。
本研究では,GANが学習した内部表現について検討し,その基礎となる変動要因を教師なしで明らかにする。
本稿では,事前学習した重みを直接分解することで,潜在意味発見のためのクローズドフォーム因数分解アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-13T18:05:36Z) - Obtaining Faithful Interpretations from Compositional Neural Networks [72.41100663462191]
NLVR2およびDROPデータセット上でNMNの中間出力を評価する。
中間出力は期待出力と異なり,ネットワーク構造がモデル動作の忠実な説明を提供していないことを示す。
論文 参考訳(メタデータ) (2020-05-02T06:50:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。