論文の概要: Toward Certified Robustness Against Real-World Distribution Shifts
- arxiv url: http://arxiv.org/abs/2206.03669v2
- Date: Thu, 9 Jun 2022 03:51:44 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-10 12:15:53.508274
- Title: Toward Certified Robustness Against Real-World Distribution Shifts
- Title(参考訳): 実世界流通シフトに対するロバスト性認定に向けて
- Authors: Haoze Wu, Teruhiro Tagomori, Alexander Robey, Fengjun Yang, Nikolai
Matni, George Pappas, Hamed Hassani, Corina Pasareanu, Clark Barrett
- Abstract要約: 我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 65.66374339500025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of certifying the robustness of deep neural networks
against real-world distribution shifts. To do so, we bridge the gap between
hand-crafted specifications and realistic deployment settings by proposing a
novel neural-symbolic verification framework, in which we train a generative
model to learn perturbations from data and define specifications with respect
to the output of the learned model. A unique challenge arising from this
setting is that existing verifiers cannot tightly approximate sigmoid
activations, which are fundamental to many state-of-the-art generative models.
To address this challenge, we propose a general meta-algorithm for handling
sigmoid activations which leverages classical notions of counter-example-guided
abstraction refinement. The key idea is to "lazily" refine the abstraction of
sigmoid functions to exclude spurious counter-examples found in the previous
abstraction, thus guaranteeing progress in the verification process while
keeping the state-space small. Experiments on the MNIST and CIFAR-10 datasets
show that our framework significantly outperforms existing methods on a range
of challenging distribution shifts.
- Abstract(参考訳): 我々は、現実世界の分散シフトに対するディープニューラルネットワークの堅牢性を証明する問題を考える。
そこで我々は,データから摂動を学習するために生成モデルを訓練し,学習したモデルの出力に関して仕様を定義する,新しいニューラルシンボリック検証フレームワークを提案することによって,手作り仕様と現実的な展開設定のギャップを埋める。
この設定から生じるユニークな課題は、既存の検証器が、多くの最先端生成モデルの基本であるsgmoidアクティベーションを厳密に近似できないことである。
この課題に対処するために,古典的な概念である反例誘導的抽象的洗練を利用したシグモイドの活性化処理のための一般メタアルゴリズムを提案する。
鍵となる考え方は、Sigmoid関数の抽象化を「緩やかに」洗練し、以前の抽象化で見いだされた急激な反例を排除し、状態空間を小さく保ちながら検証プロセスの進歩を保証することである。
MNISTとCIFAR-10データセットの実験により、我々のフレームワークは、様々な挑戦的な分散シフトにおいて、既存の手法を著しく上回ります。
関連論文リスト
- Idempotent Unsupervised Representation Learning for Skeleton-Based Action Recognition [13.593511876719367]
教師なし表現学習のための新しい骨格ベース等等化生成モデル(IGM)を提案する。
ベンチマークデータセットであるNTU RGB+DとPKUMMDに関する実験により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-10-27T06:29:04Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Matrix Completion-Informed Deep Unfolded Equilibrium Models for
Self-Supervised k-Space Interpolation in MRI [8.33626757808923]
正規化モデル駆動型ディープラーニング(DL)は,DLの強力な表現能力を活用する能力から注目されている。
理論的に保証され,完全サンプリングラベルに依存しない加速MRIのための自己教師型DLアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-24T07:25:06Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
セマンティックセグメンテーション手法の堅牢性を改善するための新しい手法を提案する。
我々は,現実的で可視な摂動画像を生成するために,新しい条件付き生成対向ネットワークであるRobustaを設計した。
我々の結果は、このアプローチが安全クリティカルなアプリケーションに有用である可能性を示唆している。
論文 参考訳(メタデータ) (2023-08-01T10:02:26Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Self-Supervised Training with Autoencoders for Visual Anomaly Detection [61.62861063776813]
我々は, 正規サンプルの分布を低次元多様体で支持する異常検出において, 特定のユースケースに焦点を当てた。
我々は、訓練中に識別情報を活用する自己指導型学習体制に適応するが、通常の例のサブ多様体に焦点をあてる。
製造領域における視覚異常検出のための挑戦的なベンチマークであるMVTec ADデータセットで、最先端の新たな結果を達成する。
論文 参考訳(メタデータ) (2022-06-23T14:16:30Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Latent Network Embedding via Adversarial Auto-encoders [15.656374849760734]
本稿では,逆グラフ自動エンコーダに基づく潜在ネットワーク埋め込みモデルを提案する。
この枠組みの下では、潜伏構造を発見する問題は、部分的な観測から潜伏関係を推測するものとして定式化されている。
論文 参考訳(メタデータ) (2021-09-30T16:49:46Z) - Extended Stochastic Block Models with Application to Criminal Networks [3.2211782521637393]
犯罪者間の関係を符号化する隠蔽ネットワークについて検討する。
ノイズの多いブロックパターンの共存は、日常的に使用されるコミュニティ検出アルゴリズムの信頼性を制限する。
我々は,共通接続パターンを持つノード群を推論する拡張ブロックモデル(ESBM)を新たに開発した。
論文 参考訳(メタデータ) (2020-07-16T19:06:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。