論文の概要: Rainy screens: Collecting rainy datasets, indoors
- arxiv url: http://arxiv.org/abs/2003.04742v1
- Date: Tue, 10 Mar 2020 13:57:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 21:21:59.609893
- Title: Rainy screens: Collecting rainy datasets, indoors
- Title(参考訳): 雨のスクリーン:屋内で雨のデータセットを収集
- Authors: Horia Porav, Valentina-Nicoleta Musat, Tom Bruls, Paul Newman
- Abstract要約: 本稿では,既存の地中構造画像から多彩な降雨画像を生成するための簡易な手法を提案する。
この設定により、既存のデータセットの多様性をタスク基底データで活用できます。
都市景観とBDDに基づく降雨量と降雨量と実際の付着液滴を用いた降雨画像を生成し,デライニングモデルを訓練する。
- 参考スコア(独自算出の注目度): 19.71705192452036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acquisition of data with adverse conditions in robotics is a cumbersome task
due to the difficulty in guaranteeing proper ground truth and synchronising
with desired weather conditions. In this paper, we present a simple method -
recording a high resolution screen - for generating diverse rainy images from
existing clear ground-truth images that is domain- and source-agnostic, simple
and scales up. This setup allows us to leverage the diversity of existing
datasets with auxiliary task ground-truth data, such as semantic segmentation,
object positions etc. We generate rainy images with real adherent droplets and
rain streaks based on Cityscapes and BDD, and train a de-raining model. We
present quantitative results for image reconstruction and semantic
segmentation, and qualitative results for an out-of-sample domain, showing that
models trained with our data generalize well.
- Abstract(参考訳): 適切な地上の真理の保証や、所望の気象条件との同期が難しいため、ロボット工学における不都合な状況を伴うデータの取得は厄介な作業である。
本稿では,既存のクリア・グラウンド・ルース・イメージから多彩な雨画像を生成するための高精細なスクリーンを簡易に記録する手法を提案する。
このセットアップにより、セマンティクスセグメンテーションやオブジェクト位置など、補助的なタスク基底データによる既存のデータセットの多様性を活用できます。
都市景観とBDDに基づく降雨量と降雨量と実際の付着液滴を用いた降雨画像を生成し,デライニングモデルを訓練する。
本稿では,画像再構成とセマンティックセグメンテーションの定量的な結果と,サンプル外領域の定性的な結果を示す。
関連論文リスト
- Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
雨のストリークは撮影画像の可視性を著しく低下させる。
既存のディープラーニングベースの画像デライニング手法では、手作業で構築されたネットワークを使用して、雨の降った画像から明確な画像への直接投影を学習する。
本稿では,雨天画像と澄んだ画像との相関関係を考察した,対照的な学習に基づく画像デライニング手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T13:51:41Z) - Not Just Streaks: Towards Ground Truth for Single Image Deraining [42.15398478201746]
実世界の雨天とクリーンなイメージペアの大規模データセットを提案する。
本稿では,雨天と清潔な画像の間の雨害損失を最小限に抑え,基盤となるシーンを再構築するディープニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-06-22T00:10:06Z) - Toward Real-world Single Image Deraining: A New Benchmark and Beyond [79.5893880599847]
現実シナリオにおけるSID(Single Image deraining)は近年注目されている。
以前の実際のデータセットは、低解像度の画像、均一な雨のストリーク、背景の変化の制限、イメージペアの誤調整に悩まされていた。
我々はRealRain-1kという新しい高品質のデータセットを構築した。
論文 参考訳(メタデータ) (2022-06-11T12:26:59Z) - Using GANs to Augment Data for Cloud Image Segmentation Task [2.294014185517203]
本稿では,GAN(Generative Adversarial Networks)によるデータ生成の有効性を示す。
また,GAN生成した画像の2進2進写像を推定し,画像として有効に活用する方法を提案する。
論文 参考訳(メタデータ) (2021-06-06T09:01:43Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z) - Conditional Variational Image Deraining [158.76814157115223]
キャラクタリゼーション性能向上のための条件変分画像レイニング(CVID)ネットワーク
本研究では,各画像の降雨密度マップを推定するための空間密度推定(SDE)モジュールを提案する。
合成および実世界のデータセットを用いた実験により,提案したCVIDネットワークは,画像のデライニングにおける従来の決定論的手法よりもはるかに優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-04-23T11:51:38Z) - Multi-Scale Progressive Fusion Network for Single Image Deraining [84.0466298828417]
空気中の雨のストリークは、位置からカメラまでの距離が異なるため、様々なぼやけた度合いや解像度で現れる。
同様の降雨パターンは、雨像やマルチスケール(またはマルチレゾリューション)バージョンで見ることができる。
本研究では,入力画像のスケールと階層的な深部特徴の観点から,雨天のマルチスケール協調表現について検討する。
論文 参考訳(メタデータ) (2020-03-24T17:22:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。