論文の概要: Using GANs to Augment Data for Cloud Image Segmentation Task
- arxiv url: http://arxiv.org/abs/2106.03064v1
- Date: Sun, 6 Jun 2021 09:01:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-06-08 17:42:55.273472
- Title: Using GANs to Augment Data for Cloud Image Segmentation Task
- Title(参考訳): GANを使ってクラウドイメージセグメンテーションタスクのデータを増やす
- Authors: Mayank Jain, Conor Meegan, and Soumyabrata Dev
- Abstract要約: 本稿では,GAN(Generative Adversarial Networks)によるデータ生成の有効性を示す。
また,GAN生成した画像の2進2進写像を推定し,画像として有効に活用する方法を提案する。
- 参考スコア(独自算出の注目度): 2.294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While cloud/sky image segmentation has extensive real-world applications, a
large amount of labelled data is needed to train a highly accurate models to
perform the task. Scarcity of such volumes of cloud/sky images with
corresponding ground-truth binary maps makes it highly difficult to train such
complex image segmentation models. In this paper, we demonstrate the
effectiveness of using Generative Adversarial Networks (GANs) to generate data
to augment the training set in order to increase the prediction accuracy of
image segmentation model. We further present a way to estimate ground-truth
binary maps for the GAN-generated images to facilitate their effective use as
augmented images. Finally, we validate our work with different statistical
techniques.
- Abstract(参考訳): クラウド/スカイイメージセグメンテーションは現実世界の広範なアプリケーションを持っているが、タスクを実行するために高精度なモデルを訓練するには大量のラベル付きデータが必要である。
このような雲/スキー画像の体積と、それに対応する接地構造二元写像は、そのような複雑な画像セグメンテーションモデルの訓練を非常に困難にしている。
本稿では,GAN(Generative Adversarial Networks)を用いて,画像セグメンテーションモデルの予測精度を高めるために,トレーニングセットを増強するためのデータ生成の有効性を示す。
さらに,gan生成画像の地中バイナリマップを推定し,その拡張画像としての利用を容易にする方法を提案する。
最後に,様々な統計的手法を用いて検証を行う。
関連論文リスト
- DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
実データ分布をより忠実に表現する分類データセットを合成するためのフレームワークを提案する。
DataDream fine-tunes LoRA weights for the image generation model on the few real image before generated the training data using the adapt model。
次に、合成データを用いてCLIPのLoRA重みを微調整し、様々なデータセットに対する以前のアプローチよりも下流画像の分類を改善する。
論文 参考訳(メタデータ) (2024-07-15T17:10:31Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Semantic Generative Augmentations for Few-Shot Counting [0.0]
合成データは,クラス非依存のカウントにどのように役立つかを検討する。
本稿では,安定拡散の二重条件付けをプロンプトと密度マップの両方で行うことを提案する。
実験により, 多様な生成戦略により, 2つの最近の数理モデルと数理モデルとのカウント精度が大幅に向上することが確認された。
論文 参考訳(メタデータ) (2023-10-26T11:42:48Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
多様な合成画像や知覚アノテーションを生成できる汎用データセット生成モデルを提案する。
本手法は,事前学習した拡散モデルに基づいて,テキスト誘導画像合成を知覚データ生成に拡張する。
拡散モデルのリッチ潜時コードはデコーダモジュールを用いて正確な認識アノテーションとして効果的に復号できることを示す。
論文 参考訳(メタデータ) (2023-08-11T14:38:11Z) - T-ADAF: Adaptive Data Augmentation Framework for Image Classification
Network based on Tensor T-product Operator [0.0]
本稿ではテンソルT-Product Operatorに基づくAdaptive Data Augmentation Frameworkを提案する。
1つの画像データを3倍にし、これら3つの画像から結果を得る。
数値実験により、我々のデータ拡張フレームワークは、元のニューラルネットワークモデルの性能を2%向上させることができることが示された。
論文 参考訳(メタデータ) (2023-06-07T08:30:44Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
本稿では,学習データの利用効率を向上させるために,逆データ拡張手法を提案する。
本稿では,データ拡張モデルとセグメンテーションネットワークを協調的に最適化する汎用的なタスク駆動学習フレームワークを提案する。
提案した逆データ拡張は生成ネットワークに依存しず,汎用セグメンテーションネットワークのプラグインモジュールとして使用できる。
論文 参考訳(メタデータ) (2021-08-07T11:32:37Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
ドメイン知識を取り入れ,データ集約学習アルゴリズムの一般化能力を向上させるためのデータ拡張手法を提案する。
本研究では,空間領域における散乱中心のスパース性とアジムタル領域における散乱係数の滑らかな変動構造を活かし,過パラメータモデルフィッティングの問題を解く。
論文 参考訳(メタデータ) (2020-12-16T21:46:33Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。