Rainy screens: Collecting rainy datasets, indoors
- URL: http://arxiv.org/abs/2003.04742v1
- Date: Tue, 10 Mar 2020 13:57:37 GMT
- Title: Rainy screens: Collecting rainy datasets, indoors
- Authors: Horia Porav, Valentina-Nicoleta Musat, Tom Bruls, Paul Newman
- Abstract summary: We present a simple method for generating diverse rainy images from existing clear ground-truth images.
This setup allows us to leverage the diversity of existing datasets with auxiliary task ground-truth data.
We generate rainy images with real adherent droplets and rain streaks based on Cityscapes and BDD, and train a de-raining model.
- Score: 19.71705192452036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Acquisition of data with adverse conditions in robotics is a cumbersome task
due to the difficulty in guaranteeing proper ground truth and synchronising
with desired weather conditions. In this paper, we present a simple method -
recording a high resolution screen - for generating diverse rainy images from
existing clear ground-truth images that is domain- and source-agnostic, simple
and scales up. This setup allows us to leverage the diversity of existing
datasets with auxiliary task ground-truth data, such as semantic segmentation,
object positions etc. We generate rainy images with real adherent droplets and
rain streaks based on Cityscapes and BDD, and train a de-raining model. We
present quantitative results for image reconstruction and semantic
segmentation, and qualitative results for an out-of-sample domain, showing that
models trained with our data generalize well.
Related papers
- Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Not Just Streaks: Towards Ground Truth for Single Image Deraining [42.15398478201746]
We propose a large-scale dataset of real-world rainy and clean image pairs.
We propose a deep neural network that reconstructs the underlying scene by minimizing a rain-robust loss between rainy and clean images.
arXiv Detail & Related papers (2022-06-22T00:10:06Z) - Toward Real-world Single Image Deraining: A New Benchmark and Beyond [79.5893880599847]
Single image deraining (SID) in real scenarios attracts increasing attention in recent years.
Previous real datasets suffer from low-resolution images, homogeneous rain streaks, limited background variation, and even misalignment of image pairs.
We establish a new high-quality dataset named RealRain-1k, consisting of $1,120$ high-resolution paired clean and rainy images with low- and high-density rain streaks, respectively.
arXiv Detail & Related papers (2022-06-11T12:26:59Z) - Using GANs to Augment Data for Cloud Image Segmentation Task [2.294014185517203]
We show the effectiveness of using Generative Adversarial Networks (GANs) to generate data to augment the training set.
We also present a way to estimate ground-truth binary maps for the GAN-generated images to facilitate their effective use as augmented images.
arXiv Detail & Related papers (2021-06-06T09:01:43Z) - From Rain Generation to Rain Removal [67.71728610434698]
We build a full Bayesian generative model for rainy image where the rain layer is parameterized as a generator.
We employ the variational inference framework to approximate the expected statistical distribution of rainy image.
Comprehensive experiments substantiate that the proposed model can faithfully extract the complex rain distribution.
arXiv Detail & Related papers (2020-08-08T18:56:51Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
This study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures.
Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks.
arXiv Detail & Related papers (2020-05-19T05:52:13Z) - Conditional Variational Image Deraining [158.76814157115223]
Conditional Variational Image Deraining (CVID) network for better deraining performance.
We propose a spatial density estimation (SDE) module to estimate a rain density map for each image.
Experiments on synthesized and real-world datasets show that the proposed CVID network achieves much better performance than previous deterministic methods on image deraining.
arXiv Detail & Related papers (2020-04-23T11:51:38Z) - Multi-Scale Progressive Fusion Network for Single Image Deraining [84.0466298828417]
Rain streaks in the air appear in various blurring degrees and resolutions due to different distances from their positions to the camera.
Similar rain patterns are visible in a rain image as well as its multi-scale (or multi-resolution) versions.
In this work, we explore the multi-scale collaborative representation for rain streaks from the perspective of input image scales and hierarchical deep features.
arXiv Detail & Related papers (2020-03-24T17:22:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.