Using GANs to Augment Data for Cloud Image Segmentation Task
- URL: http://arxiv.org/abs/2106.03064v1
- Date: Sun, 6 Jun 2021 09:01:43 GMT
- Title: Using GANs to Augment Data for Cloud Image Segmentation Task
- Authors: Mayank Jain, Conor Meegan, and Soumyabrata Dev
- Abstract summary: We show the effectiveness of using Generative Adversarial Networks (GANs) to generate data to augment the training set.
We also present a way to estimate ground-truth binary maps for the GAN-generated images to facilitate their effective use as augmented images.
- Score: 2.294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While cloud/sky image segmentation has extensive real-world applications, a
large amount of labelled data is needed to train a highly accurate models to
perform the task. Scarcity of such volumes of cloud/sky images with
corresponding ground-truth binary maps makes it highly difficult to train such
complex image segmentation models. In this paper, we demonstrate the
effectiveness of using Generative Adversarial Networks (GANs) to generate data
to augment the training set in order to increase the prediction accuracy of
image segmentation model. We further present a way to estimate ground-truth
binary maps for the GAN-generated images to facilitate their effective use as
augmented images. Finally, we validate our work with different statistical
techniques.
Related papers
- DataDream: Few-shot Guided Dataset Generation [90.09164461462365]
We propose a framework for synthesizing classification datasets that more faithfully represents the real data distribution.
DataDream fine-tunes LoRA weights for the image generation model on the few real images before generating the training data using the adapted model.
We then fine-tune LoRA weights for CLIP using the synthetic data to improve downstream image classification over previous approaches on a large variety of datasets.
arXiv Detail & Related papers (2024-07-15T17:10:31Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Semantic Generative Augmentations for Few-Shot Counting [0.0]
We investigate how synthetic data can benefit few-shot class-agnostic counting.
We propose to rely on a double conditioning of Stable Diffusion with both a prompt and a density map.
Our experiments show that our diversified generation strategy significantly improves the counting accuracy of two recent and performing few-shot counting models.
arXiv Detail & Related papers (2023-10-26T11:42:48Z) - DatasetDM: Synthesizing Data with Perception Annotations Using Diffusion
Models [61.906934570771256]
We present a generic dataset generation model that can produce diverse synthetic images and perception annotations.
Our method builds upon the pre-trained diffusion model and extends text-guided image synthesis to perception data generation.
We show that the rich latent code of the diffusion model can be effectively decoded as accurate perception annotations using a decoder module.
arXiv Detail & Related papers (2023-08-11T14:38:11Z) - T-ADAF: Adaptive Data Augmentation Framework for Image Classification
Network based on Tensor T-product Operator [0.0]
This paper proposes an Adaptive Data Augmentation Framework based on the tensor T-product Operator.
It triples one image data to be trained and gain the result from all these three images together with only less than 0.1% increase in the number of parameters.
Numerical experiments show that our data augmentation framework can improve the performance of original neural network model by 2%.
arXiv Detail & Related papers (2023-06-07T08:30:44Z) - Enhancing MR Image Segmentation with Realistic Adversarial Data
Augmentation [17.539828821476224]
We propose an adversarial data augmentation approach to improve the efficiency in utilizing training data.
We present a generic task-driven learning framework, which jointly optimize a data augmentation model and a segmentation network during training.
The proposed adversarial data augmentation does not rely on generative networks and can be used as a plug-in module in general segmentation networks.
arXiv Detail & Related papers (2021-08-07T11:32:37Z) - Sparse Signal Models for Data Augmentation in Deep Learning ATR [0.8999056386710496]
We propose a data augmentation approach to incorporate domain knowledge and improve the generalization power of a data-intensive learning algorithm.
We exploit the sparsity of the scattering centers in the spatial domain and the smoothly-varying structure of the scattering coefficients in the azimuthal domain to solve the ill-posed problem of over-parametrized model fitting.
arXiv Detail & Related papers (2020-12-16T21:46:33Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
This work addresses weakly supervised semantic segmentation (WSSS), with the goal of bridging the gap between image-level annotations and pixel-level segmentation.
We formulate WSSS as a novel group-wise learning task that explicitly models semantic dependencies in a group of images to estimate more reliable pseudo ground-truths.
In particular, we devise a graph neural network (GNN) for group-wise semantic mining, wherein input images are represented as graph nodes.
arXiv Detail & Related papers (2020-12-09T12:40:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.