Reconstruction of 3D flight trajectories from ad-hoc camera networks
- URL: http://arxiv.org/abs/2003.04784v2
- Date: Wed, 29 Jul 2020 09:40:39 GMT
- Title: Reconstruction of 3D flight trajectories from ad-hoc camera networks
- Authors: Jingtong Li, Jesse Murray, Dorina Ismaili, Konrad Schindler, Cenek
Albl
- Abstract summary: We present a method to reconstruct the 3D trajectory of an airborne robotic system only from videos recorded with cameras that are unsynchronized.
Our approach enables robust and accurate outside-in tracking of dynamically flying targets, with cheap and easy-to-deploy equipment.
- Score: 19.96488566402593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a method to reconstruct the 3D trajectory of an airborne robotic
system only from videos recorded with cameras that are unsynchronized, may
feature rolling shutter distortion, and whose viewpoints are unknown. Our
approach enables robust and accurate outside-in tracking of dynamically flying
targets, with cheap and easy-to-deploy equipment. We show that, in spite of the
weakly constrained setting, recent developments in computer vision make it
possible to reconstruct trajectories in 3D from unsynchronized, uncalibrated
networks of consumer cameras, and validate the proposed method in a realistic
field experiment. We make our code available along with the data, including
cm-accurate ground-truth from differential GNSS navigation.
Related papers
- DynOMo: Online Point Tracking by Dynamic Online Monocular Gaussian Reconstruction [65.46359561104867]
We target the challenge of online 2D and 3D point tracking from unposed monocular camera input.
We leverage 3D Gaussian splatting to reconstruct dynamic scenes in an online fashion.
We aim to inspire the community to advance online point tracking and reconstruction, expanding the applicability to diverse real-world scenarios.
arXiv Detail & Related papers (2024-09-03T17:58:03Z) - Reconstructing Satellites in 3D from Amateur Telescope Images [44.20773507571372]
This paper proposes a framework for the 3D reconstruction of satellites in low-Earth orbit, utilizing videos captured by small amateur telescopes.
The video data obtained from these telescopes differ significantly from data for standard 3D reconstruction tasks, characterized by intense motion blur, atmospheric turbulence, pervasive background light pollution, extended focal length and constrained observational perspectives.
We validate our approach using both synthetic datasets and actual observations of China's Space Station, showcasing its significant advantages over existing methods in reconstructing 3D space objects from ground-based observations.
arXiv Detail & Related papers (2024-04-29T03:13:09Z) - Towards 3D Vision with Low-Cost Single-Photon Cameras [24.711165102559438]
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras.
Our work draws a connection between image-based modeling and active range scanning and is a step towards 3D vision with single-photon cameras.
arXiv Detail & Related papers (2024-03-26T15:40:05Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - 3D Data Augmentation for Driving Scenes on Camera [50.41413053812315]
We propose a 3D data augmentation approach termed Drive-3DAug, aiming at augmenting the driving scenes on camera in the 3D space.
We first utilize Neural Radiance Field (NeRF) to reconstruct the 3D models of background and foreground objects.
Then, augmented driving scenes can be obtained by placing the 3D objects with adapted location and orientation at the pre-defined valid region of backgrounds.
arXiv Detail & Related papers (2023-03-18T05:51:05Z) - Aerial Monocular 3D Object Detection [46.26215100532241]
This work proposes a dual-view detection system named DVDET to achieve aerial monocular object detection in both the 2D image space and the 3D physical space.
To address the dataset challenge, we propose a new large-scale simulation dataset named AM3D-Sim, generated by the co-simulation of AirSIM and CARLA, and a new real-world aerial dataset named AM3D-Real, collected by DJI Matrice 300 RTK.
arXiv Detail & Related papers (2022-08-08T08:32:56Z) - Neural Scene Representation for Locomotion on Structured Terrain [56.48607865960868]
We propose a learning-based method to reconstruct the local terrain for a mobile robot traversing urban environments.
Using a stream of depth measurements from the onboard cameras and the robot's trajectory, the estimates the topography in the robot's vicinity.
We propose a 3D reconstruction model that faithfully reconstructs the scene, despite the noisy measurements and large amounts of missing data coming from the blind spots of the camera arrangement.
arXiv Detail & Related papers (2022-06-16T10:45:17Z) - Real-time dense 3D Reconstruction from monocular video data captured by
low-cost UAVs [0.3867363075280543]
Real-time 3D reconstruction enables fast dense mapping of the environment which benefits numerous applications, such as navigation or live evaluation of an emergency.
In contrast to most real-time capable approaches, our approach does not need an explicit depth sensor.
By exploiting the self-motion of the unmanned aerial vehicle (UAV) flying with oblique view around buildings, we estimate both camera trajectory and depth for selected images with enough novel content.
arXiv Detail & Related papers (2021-04-21T13:12:17Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Integration of the 3D Environment for UAV Onboard Visual Object Tracking [7.652259812856325]
Single visual object tracking from an unmanned aerial vehicle poses fundamental challenges.
We introduce a pipeline that combines a model-free visual object tracker, a sparse 3D reconstruction, and a state estimator.
By representing the position of the target in 3D space rather than in image space, we stabilize the tracking during ego-motion.
arXiv Detail & Related papers (2020-08-06T18:37:29Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.