論文の概要: Computed Tomography Reconstruction Using Deep Image Prior and Learned
Reconstruction Methods
- arxiv url: http://arxiv.org/abs/2003.04989v2
- Date: Thu, 12 Mar 2020 12:09:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-24 20:26:08.280267
- Title: Computed Tomography Reconstruction Using Deep Image Prior and Learned
Reconstruction Methods
- Title(参考訳): deep image prior and learned reconstruction 法によるct再構成
- Authors: Daniel Otero Baguer, Johannes Leuschner, Maximilian Schmidt
- Abstract要約: 本研究では,低データ状態の文脈における深層学習手法の計算トモグラフィへの応用について検討する。
学習した原始双対は、復元品質とデータ効率の点で優れた性能を有することがわかった。
提案手法は,低データレジームにおける最先端の結果を改善する。
- 参考スコア(独自算出の注目度): 0.8263596314702016
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we investigate the application of deep learning methods for
computed tomography in the context of having a low-data regime. As motivation,
we review some of the existing approaches and obtain quantitative results after
training them with different amounts of data. We find that the learned
primal-dual has an outstanding performance in terms of reconstruction quality
and data efficiency. However, in general, end-to-end learned methods have two
issues: a) lack of classical guarantees in inverse problems and b) lack of
generalization when not trained with enough data. To overcome these issues, we
bring in the deep image prior approach in combination with classical
regularization. The proposed methods improve the state-of-the-art results in
the low data-regime.
- Abstract(参考訳): 本研究では,低データ状態の文脈における深層学習手法の計算トモグラフィへの応用について検討する。
モチベーションとして、既存のアプローチをレビューし、異なる量のデータでトレーニングした後、定量的な結果を得る。
その結果,本研究は,復元品質とデータ効率において優れた性能を有することがわかった。
しかし、一般的に、エンドツーエンドの学習方法には2つの問題がある。
a)逆問題における古典的保証の欠如
b) 十分なデータで訓練されていない場合の一般化の欠如
これらの問題を克服するために、古典的な正規化と組み合わせて、より深い画像の事前アプローチを導入する。
提案手法は低データレジスタの最先端結果を改善する。
関連論文リスト
- Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
ディープラーニングシステムは、一連のタスクから学ぶとき、破滅的な忘れがちだ。
問題を緩和するため、新しいタスクを学ぶ際に経験豊富なタスクのデータを再生する手法が提案されている。
しかし、メモリ制約やデータプライバシーの問題を考慮すると、実際には期待できない。
代替として、分類モデルからサンプルを反転させることにより、データフリーなデータ再生法を提案する。
論文 参考訳(メタデータ) (2024-01-12T12:51:12Z) - Learning from small data sets: Patch-based regularizers in inverse
problems for image reconstruction [1.1650821883155187]
機械学習の最近の進歩は、ネットワークを訓練するために大量のデータとコンピュータ能力を必要とする。
本稿は,ごく少数の画像のパッチを考慮に入れることで,小さなデータセットから学習する問題に対処する。
本稿では,Langevin Monte Carlo法を用いて後部を近似することにより,不確実な定量化を実現する方法を示す。
論文 参考訳(メタデータ) (2023-12-27T15:30:05Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - Always Be Dreaming: A New Approach for Data-Free Class-Incremental
Learning [73.24988226158497]
データフリークラスインクリメンタルラーニング(DFCIL)における高インパクト問題について考察する。
そこで本研究では, 改良型クロスエントロピートレーニングと重要重み付き特徴蒸留に寄与するDFCILの新たなインクリメンタル蒸留戦略を提案する。
本手法は,共通クラスインクリメンタルベンチマークにおけるSOTA DFCIL法と比較して,最終タスク精度(絶対差)が25.1%向上する。
論文 参考訳(メタデータ) (2021-06-17T17:56:08Z) - A Survey on Deep Semi-supervised Learning [51.26862262550445]
まず,既存の手法を分類した深層半指導学習の分類法を提案する。
次に、損失の種類、貢献度、アーキテクチャの違いの観点から、これらのメソッドを詳細に比較します。
論文 参考訳(メタデータ) (2021-02-28T16:22:58Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problem は、デブロアリングや超解像など、多くの画像処理アプリケーションに現れる。
本稿では,一般化されたSteinUnbiased Risk Estimator(GSURE)の「投影変換」とCNNによる潜在画像のパラメータ化を含む損失関数の最小化に基づく,新たな画像復元フレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-04T08:52:46Z) - Deep Optimized Priors for 3D Shape Modeling and Reconstruction [38.79018852887249]
3Dモデリングと再構築のための新しい学習フレームワークを紹介します。
提案手法は,事前訓練によって制約された障壁を効果的に破壊することを示す。
論文 参考訳(メタデータ) (2020-12-14T03:56:31Z) - Monocular Depth Estimation via Listwise Ranking using the Plackett-Luce
Model [15.472533971305367]
多くの実世界のアプリケーションでは、画像内の物体の相対的な深さがシーン理解に不可欠である。
近年のアプローチでは, この問題を回帰課題として扱うことにより, 単眼画像の深度予測の問題に対処している。
しかし、ランク付け手法は回帰の自然な代替として自らを示唆しており、実際、ペア比較を利用したランク付け手法はこの問題に対して有望な性能を示している。
論文 参考訳(メタデータ) (2020-10-25T13:40:10Z) - Blind Image Restoration with Flow Based Priors [19.190289348734215]
未知の劣化を伴う盲点において、優れた先行性は依然として不可欠である。
本稿では, 正規化フローを用いて対象コンテンツの分布をモデル化し, 最大アフターリ(MAP)の定式化に先立ってこれを前もって用いることを提案する。
我々の知る限りでは、これは画像強調問題に先行する正規化フローを探求する最初の研究である。
論文 参考訳(メタデータ) (2020-09-09T21:40:11Z) - Continual Deep Learning by Functional Regularisation of Memorable Past [95.97578574330934]
知的システムにとって、新しいスキルを継続的に学習することは重要だが、標準的なディープラーニング手法は、過去の破滅的な忘れ物に悩まされている。
本稿では, 過去の記憶に残るいくつかの例を, 忘れることを避けるために活用する機能正規化手法を提案する。
提案手法は,標準ベンチマーク上での最先端性能を実現し,正規化とメモリベースの手法を自然に組み合わせた生涯学習の新たな方向性を開拓する。
論文 参考訳(メタデータ) (2020-04-29T10:47:54Z) - Learning regularization and intensity-gradient-based fidelity for single
image super resolution [0.0]
画像劣化の進行について検討し、強度と勾配空間の両方で劣化モデルを確立する。
復元には包括的データ一貫性制約が設定される。
提案した忠実度項と設計された正規化項は正規化フレームワークに組み込まれる。
論文 参考訳(メタデータ) (2020-03-24T07:03:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。