Auditing ML Models for Individual Bias and Unfairness
- URL: http://arxiv.org/abs/2003.05048v1
- Date: Wed, 11 Mar 2020 00:35:57 GMT
- Title: Auditing ML Models for Individual Bias and Unfairness
- Authors: Songkai Xue, Mikhail Yurochkin and Yuekai Sun
- Abstract summary: We formalize the task of auditing ML models for individual bias/unfairness and develop a suite of inferential tools for the optimal value.
To demonstrate the utility of our tools, we use them to reveal the gender and racial biases in Northpointe's COMPAS recidivism prediction instrument.
- Score: 46.94549066382216
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of auditing ML models for individual bias/unfairness. We
formalize the task in an optimization problem and develop a suite of
inferential tools for the optimal value. Our tools permit us to obtain
asymptotic confidence intervals and hypothesis tests that cover the
target/control the Type I error rate exactly. To demonstrate the utility of our
tools, we use them to reveal the gender and racial biases in Northpointe's
COMPAS recidivism prediction instrument.
Related papers
- Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Statistical Inference for Fairness Auditing [4.318555434063274]
We frame this task as "fairness auditing," in terms of multiple hypothesis testing.
We show how the bootstrap can be used to simultaneously bound performance disparities over a collection of groups.
Our methods can be used to flag subpopulations affected by model underperformance, and certify subpopulations for which the model performs adequately.
arXiv Detail & Related papers (2023-05-05T17:54:22Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - A Sandbox Tool to Bias(Stress)-Test Fairness Algorithms [19.86635585740634]
We present the conceptual idea and a first implementation of a bias-injection sandbox tool to investigate fairness consequences of various biases.
Unlike existing toolkits, ours provides a controlled environment to counterfactually inject biases in the ML pipeline.
In particular, we can test whether a given remedy can alleviate the injected bias by comparing the predictions resulting after the intervention with true labels in the unbiased regime-that is, before any bias injection.
arXiv Detail & Related papers (2022-04-21T16:12:19Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Test-time Collective Prediction [73.74982509510961]
Multiple parties in machine learning want to jointly make predictions on future test points.
Agents wish to benefit from the collective expertise of the full set of agents, but may not be willing to release their data or model parameters.
We explore a decentralized mechanism to make collective predictions at test time, leveraging each agent's pre-trained model.
arXiv Detail & Related papers (2021-06-22T18:29:58Z) - Statistical inference for individual fairness [24.622418924551315]
We focus on the problem of detecting violations of individual fairness in machine learning models.
We develop a suite of inference tools for the adversarial cost function.
We demonstrate the utility of our tools in a real-world case study.
arXiv Detail & Related papers (2021-03-30T22:49:25Z) - Prediction Confidence from Neighbors [0.0]
The inability of Machine Learning (ML) models to successfully extrapolate correct predictions from out-of-distribution (OoD) samples is a major hindrance to the application of ML in critical applications.
We show that feature space distance is a meaningful measure that can provide confidence in predictions.
This enables earlier and safer deployment of models in critical applications and is vital for deploying models under ever-changing conditions.
arXiv Detail & Related papers (2020-03-31T09:26:09Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.