Delay-Adaptive Learning in Generalized Linear Contextual Bandits
- URL: http://arxiv.org/abs/2003.05174v1
- Date: Wed, 11 Mar 2020 09:12:44 GMT
- Title: Delay-Adaptive Learning in Generalized Linear Contextual Bandits
- Authors: Jose Blanchet, Renyuan Xu and Zhengyuan Zhou
- Abstract summary: We study the performance of two well-known algorithms adapted to a delayed setting.
We describe modifications on how these two algorithms should be adapted to handle delays.
Our results contribute to the broad landscape of contextual bandits literature.
- Score: 18.68458152442088
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In this paper, we consider online learning in generalized linear contextual
bandits where rewards are not immediately observed. Instead, rewards are
available to the decision-maker only after some delay, which is unknown and
stochastic. We study the performance of two well-known algorithms adapted to
this delayed setting: one based on upper confidence bounds, and the other based
on Thompson sampling. We describe modifications on how these two algorithms
should be adapted to handle delays and give regret characterizations for both
algorithms. Our results contribute to the broad landscape of contextual bandits
literature by establishing that both algorithms can be made to be robust to
delays, thereby helping clarify and reaffirm the empirical success of these two
algorithms, which are widely deployed in modern recommendation engines.
Related papers
- Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
We propose a Thompson sampling algorithm, named FGTS.CDB, for linear contextual dueling bandits.
At the core of our algorithm is a new Feel-Good exploration term specifically tailored for dueling bandits.
Our algorithm achieves nearly minimax-optimal regret, i.e., $tildemathcalO(dsqrt T)$, where $d$ is the model dimension and $T$ is the time horizon.
arXiv Detail & Related papers (2024-04-09T04:45:18Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Overcoming Prior Misspecification in Online Learning to Rank [4.665041704405341]
We propose and analyze adaptive algorithms that address the requirement for the prior to match the true prior.
We also consider scalar relevance feedback on top of click feedback.
We demonstrate the efficacy of our algorithms using both synthetic and real-world experiments.
arXiv Detail & Related papers (2023-01-25T15:48:00Z) - Thompson Sampling with Virtual Helping Agents [0.0]
We address the problem of online sequential decision making, i.e., balancing the trade-off between exploiting current knowledge to maximize immediate performance and exploring the new information to gain long-term benefits.
We propose two algorithms for the multi-armed bandit problem and provide theoretical bounds on the cumulative regret.
arXiv Detail & Related papers (2022-09-16T23:34:44Z) - Tree-Based Adaptive Model Learning [62.997667081978825]
We extend the Kearns-Vazirani learning algorithm to handle systems that change over time.
We present a new learning algorithm that can reuse and update previously learned behavior, implement it in the LearnLib library, and evaluate it on large examples.
arXiv Detail & Related papers (2022-08-31T21:24:22Z) - Efficient and Optimal Algorithms for Contextual Dueling Bandits under
Realizability [59.81339109121384]
We study the $K$ contextual dueling bandit problem, a sequential decision making setting in which the learner uses contextual information to make two decisions, but only observes emphpreference-based feedback suggesting that one decision was better than the other.
We provide a new algorithm that achieves the optimal regret rate for a new notion of best response regret, which is a strictly stronger performance measure than those considered in prior works.
arXiv Detail & Related papers (2021-11-24T07:14:57Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Experimental Design for Regret Minimization in Linear Bandits [19.8309784360219]
We propose a novel design-based algorithm to minimize regret in online linear and bandits.
We provide state-of-the-art finite time regret guarantees and show that our algorithm can be applied in both the bandit and semi-bandit feedback regime.
arXiv Detail & Related papers (2020-11-01T17:59:19Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z) - Bandit algorithms to emulate human decision making using probabilistic
distortions [20.422725678982726]
We formulate two sample multi-armed bandit problems with distorted probabilities on the reward distributions.
We consider the aforementioned problems in the regret minimization as well as best arm identification framework for multi-armed bandits.
arXiv Detail & Related papers (2016-11-30T17:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.