Semi-Local 3D Lane Detection and Uncertainty Estimation
- URL: http://arxiv.org/abs/2003.05257v1
- Date: Wed, 11 Mar 2020 12:35:24 GMT
- Title: Semi-Local 3D Lane Detection and Uncertainty Estimation
- Authors: Netalee Efrat, Max Bluvstein, Noa Garnett, Dan Levi, Shaul Oron, Bat
El Shlomo
- Abstract summary: Our method is based on a semi-local, BEV, tile representation that breaks down lanes into simple lane segments.
It combines learning a parametric model for the segments along with a deep feature embedding that is then used to cluster segment together into full lanes.
Our method is the first to output a learning based uncertainty estimation for the lane detection task.
- Score: 6.296104145657063
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel camera-based DNN method for 3D lane detection with
uncertainty estimation. Our method is based on a semi-local, BEV, tile
representation that breaks down lanes into simple lane segments. It combines
learning a parametric model for the segments along with a deep feature
embedding that is then used to cluster segment together into full lanes. This
combination allows our method to generalize to complex lane topologies,
curvatures and surface geometries. Additionally, our method is the first to
output a learning based uncertainty estimation for the lane detection task. The
efficacy of our method is demonstrated in extensive experiments achieving
state-of-the-art results for camera-based 3D lane detection, while also showing
our ability to generalize to complex topologies, curvatures and road geometries
as well as to different cameras. We also demonstrate how our uncertainty
estimation aligns with the empirical error statistics indicating that it is
well calibrated and truly reflects the detection noise.
Related papers
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
Lane detection plays an important role in autonomous driving perception systems.
As deep learning algorithms gain popularity, monocular lane detection methods based on deep learning have demonstrated superior performance.
This paper presents a comprehensive overview of existing methods, encompassing both the increasingly mature 2D lane detection approaches and the developing 3D lane detection works.
arXiv Detail & Related papers (2024-11-25T12:09:43Z) - Cameras as Rays: Pose Estimation via Ray Diffusion [54.098613859015856]
Estimating camera poses is a fundamental task for 3D reconstruction and remains challenging given sparsely sampled views.
We propose a distributed representation of camera pose that treats a camera as a bundle of rays.
Our proposed methods, both regression- and diffusion-based, demonstrate state-of-the-art performance on camera pose estimation on CO3D.
arXiv Detail & Related papers (2024-02-22T18:59:56Z) - 3D Lane Detection from Front or Surround-View using Joint-Modeling & Matching [27.588395086563978]
We propose a joint modeling approach that combines Bezier curves and methods.
We also introduce a novel 3D Spatial, representing an exploration of 3D surround-view lane detection research.
This innovative method establishes a new benchmark in front-view 3D lane detection on the Openlane dataset.
arXiv Detail & Related papers (2024-01-16T01:12:24Z) - Decoupling the Curve Modeling and Pavement Regression for Lane Detection [67.22629246312283]
curve-based lane representation is a popular approach in many lane detection methods.
We propose a new approach to the lane detection task by decomposing it into two parts: curve modeling and ground height regression.
arXiv Detail & Related papers (2023-09-19T11:24:14Z) - Improving Online Lane Graph Extraction by Object-Lane Clustering [106.71926896061686]
We propose an architecture and loss formulation to improve the accuracy of local lane graph estimates.
The proposed method learns to assign the objects to centerlines by considering the centerlines as cluster centers.
We show that our method can achieve significant performance improvements by using the outputs of existing 3D object detection methods.
arXiv Detail & Related papers (2023-07-20T15:21:28Z) - CurveFormer: 3D Lane Detection by Curve Propagation with Curve Queries
and Attention [3.330270927081078]
3D lane detection is an integral part of autonomous driving systems.
Previous CNN and Transformer-based methods usually first generate a bird's-eye-view (BEV) feature map from the front view image.
We propose CurveFormer, a single-stage Transformer-based method that directly calculates 3D lane parameters.
arXiv Detail & Related papers (2022-09-16T14:54:57Z) - CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional
Convolution [39.62595444015094]
We propose CondLaneNet, a novel top-to-down lane detection framework.
We also introduce a conditional lane detection strategy based on conditional convolution and row-wise formulation.
Our method achieves state-of-the-art performance on three benchmark datasets.
arXiv Detail & Related papers (2021-05-11T13:10:34Z) - End-to-end Learning for Inter-Vehicle Distance and Relative Velocity
Estimation in ADAS with a Monocular Camera [81.66569124029313]
We propose a camera-based inter-vehicle distance and relative velocity estimation method based on end-to-end training of a deep neural network.
The key novelty of our method is the integration of multiple visual clues provided by any two time-consecutive monocular frames.
We also propose a vehicle-centric sampling mechanism to alleviate the effect of perspective distortion in the motion field.
arXiv Detail & Related papers (2020-06-07T08:18:31Z) - Road Curb Detection and Localization with Monocular Forward-view Vehicle
Camera [74.45649274085447]
We propose a robust method for estimating road curb 3D parameters using a calibrated monocular camera equipped with a fisheye lens.
Our approach is able to estimate the vehicle to curb distance in real time with mean accuracy of more than 90%.
arXiv Detail & Related papers (2020-02-28T00:24:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.